PHYS 3090: Homework 1 (due Friday Sept. 19)

1. This problem deals with complex vector spaces.

- Let $\vec{u}=\binom{2 i}{-1}, \vec{v}=\binom{1+i}{-i}$, and $a=3 i+1$. Compute $\langle\vec{u}, \vec{v}\rangle$ and $\langle a \vec{u}, \vec{v}\rangle$.
- Let \vec{u}, \vec{v} be vectors in a complex vector space and R be a unitary matrix. Show that $\langle\vec{u}, \vec{v}\rangle=\left\langle\vec{u}^{\prime}, \vec{v}^{\prime}\right\rangle$, where $\vec{u}^{\prime}=R \vec{u}$ and $\vec{v}^{\prime}=R \vec{v}$.
- Prove that the eigenvalues of a Hermitian matrix M are real.
- Find the eigenvalues λ_{1}, λ_{2} for the Hermitian matrix $M=\left(\begin{array}{cc}0 & 2 i \\ -2 i & 3\end{array}\right)$. Find the matrix R such that $R^{\dagger} M R=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$.

2. In the quantum mechanical description of angular momentum, the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

play an important role. Defining $\overrightarrow{\boldsymbol{\sigma}}=\left(\begin{array}{c}\sigma_{1} \\ \sigma_{2} \\ \sigma_{3}\end{array}\right)$, any real three-component vector $\vec{v}=\left(\begin{array}{c}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$ can be expressed as a 2×2 Hermitian matrix

$$
\vec{v} \cdot \overrightarrow{\boldsymbol{\sigma}}=\sum_{i=1}^{3} v_{i} \sigma_{i}=\left(\begin{array}{cc}
v_{z} & v_{x}-i v_{y} \tag{2}\\
v_{x}+i v_{y} & -v_{z}
\end{array}\right)
$$

- Show that $(\vec{v} \cdot \overrightarrow{\boldsymbol{\sigma}})^{2}=|\vec{v}|^{2} \mathbb{1}$ for any \vec{v}.
- Show that $\exp (i \vec{v} \cdot \overrightarrow{\boldsymbol{\sigma}})=\cos |\vec{v}| \mathbb{1}+i(\hat{v} \cdot \overrightarrow{\boldsymbol{\sigma}}) \sin |\vec{v}|$.
- Consider a new matrix $M=c \mathbb{1}+\vec{v} \cdot \overrightarrow{\boldsymbol{\sigma}}$. What is $\exp (i M)$? Compute $\exp \left(\begin{array}{cc}2 i & 1 \\ -1 & 0\end{array}\right)$.

3. Consider a vector $\vec{v}=\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$ in \mathbb{R}^{3} (3d space).

- Find the 3×3 rotation matrix $R_{z}(\alpha)$ that rotates \vec{v} about the \hat{e}_{z} axis by an angle α. Similarly, find the rotation matrices $R_{x}(\alpha)$ and $R_{y}(\alpha)$ that rotate \vec{v} about the \hat{e}_{x} and \hat{e}_{y} axes, respectively.
- Show that two rotations about the same axis commute by proving $R_{z}(\alpha) R_{z}(\theta)=R_{z}(\theta) R_{z}(\alpha)$. Show that two rotations about different axes do not commute. (Note: Two matrices A and B commute if $A B=B A$.)

Figure 1: Sketch of a circularly polarized state rotating in the $x-y$ plane as a function of time. The blue curve is $x(t)$, the green curve is $y(t)$, and the red curve is $\vec{r}(t)$.
4. The equation of motion for a 3d simple harmonic oscillator is $\ddot{\vec{r}}=-\omega^{2} \vec{r}$, where $\vec{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is the displacement vector, ω is the frequency, and ${ }^{\cdot}=d / d t$.

- Show that $\vec{r}(t)$ given by the real part of the complex vector $\overrightarrow{\mathscr{R}}(t)=\vec{v} e^{i \omega t}$ is a solution for any vector \vec{v}.
- What are the eigenvalues $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ and eigenvectors $\left(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right)$ of the rotation matrix $R_{z}(\alpha)$ from problem 3?
- Evaluate $\vec{r}(t)$ separately for each eigenvector by setting $\vec{v}=\vec{u}_{i}$. Normalize your three solutions such that $|\vec{r}(0)|=r_{0}$.
- Evaluate the angular momentum vector $\vec{L}=\vec{r} \times \vec{p}$ for each of the solutions obtained above (recall $\vec{p}=$ $m \dot{\vec{r}}$, where m is the mass). Show that the solutions correspond to a right-handed circular polarization $\left(L_{z}=|\vec{L}|\right)$, a left-handed circular polarization $\left(L_{z}=-|\vec{L}|\right)$, and a longitudinal polarization $\left(L_{z}=0\right)$. (See Figure 1.)
- Evaluate $R_{z}(\alpha) \vec{r}(t)$ for each solution $\vec{r}(t)$. What is the physical interpretation for your result?

