PHYS 3090: Homework 1 (due Friday Sept. 19)

- 1. This problem deals with complex vector spaces.
 - Let $\vec{u} = \begin{pmatrix} 2i \\ -1 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 1+i \\ -i \end{pmatrix}$, and a = 3i + 1. Compute $\langle \vec{u}, \vec{v} \rangle$ and $\langle a\vec{u}, \vec{v} \rangle$.
 - Let \vec{u}, \vec{v} be vectors in a complex vector space and R be a unitary matrix. Show that $\langle \vec{u}, \vec{v} \rangle = \langle \vec{u}', \vec{v}' \rangle$, where $\vec{u}' = R\vec{u}$ and $\vec{v}' = R\vec{v}$.
 - Prove that the eigenvalues of a Hermitian matrix M are real.
 - Find the eigenvalues λ_1, λ_2 for the Hermitian matrix $M = \begin{pmatrix} 0 & 2i \\ -2i & 3 \end{pmatrix}$. Find the matrix R such that $R^{\dagger}MR = \text{diag}(\lambda_1, \lambda_2)$.
- 2. In the quantum mechanical description of angular momentum, the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(1)

play an important role. Defining $\vec{\sigma} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix}$, any real three-component vector $\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$ can be expressed as a 2 × 2 Hermitian matrix

$$\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i = \begin{pmatrix} v_z & v_x - iv_y \\ v_x + iv_y & -v_z \end{pmatrix}$$
(2)

- Show that $(\vec{v} \cdot \vec{\sigma})^2 = |\vec{v}|^2 \mathbb{1}$ for any \vec{v} .
- Show that $\exp(i\vec{v}\cdot\vec{\sigma}) = \cos|\vec{v}| \,\mathbbm{1} + i(\hat{v}\cdot\vec{\sigma}) \,\sin|\vec{v}|.$
- Consider a new matrix $M = c\mathbb{1} + \vec{v} \cdot \vec{\sigma}$. What is $\exp(iM)$? Compute $\exp\begin{pmatrix} 2i & 1\\ -1 & 0 \end{pmatrix}$.

3. Consider a vector $\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$ in \mathbb{R}^3 (3d space).

- Find the 3×3 rotation matrix $R_z(\alpha)$ that rotates \vec{v} about the \hat{e}_z axis by an angle α . Similarly, find the rotation matrices $R_x(\alpha)$ and $R_y(\alpha)$ that rotate \vec{v} about the \hat{e}_x and \hat{e}_y axes, respectively.
- Show that two rotations about the same axis commute by proving $R_z(\alpha)R_z(\theta) = R_z(\theta)R_z(\alpha)$. Show that two rotations about different axes do not commute. (Note: Two matrices A and B commute if AB = BA.)

Figure 1: Sketch of a circularly polarized state rotating in the x-y plane as a function of time. The blue curve is x(t), the green curve is y(t), and the red curve is $\vec{r}(t)$.

4. The equation of motion for a 3d simple harmonic oscillator is $\ddot{\vec{r}} = -\omega^2 \vec{r}$, where $\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is the displacement vector, ω is the frequency, and $\dot{=} d/dt$.

- Show that $\vec{r}(t)$ given by the real part of the complex vector $\vec{\mathscr{R}}(t) = \vec{v}e^{i\omega t}$ is a solution for any vector \vec{v} .
- What are the eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$ and eigenvectors $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ of the rotation matrix $R_z(\alpha)$ from problem 3?
- Evaluate $\vec{r}(t)$ separately for each eigenvector by setting $\vec{v} = \vec{u}_i$. Normalize your three solutions such that $|\vec{r}(0)| = r_0$.
- Evaluate the angular momentum vector $\vec{L} = \vec{r} \times \vec{p}$ for each of the solutions obtained above (recall $\vec{p} = m\dot{\vec{r}}$, where *m* is the mass). Show that the solutions correspond to a right-handed circular polarization $(L_z = |\vec{L}|)$, a left-handed circular polarization $(L_z = -|\vec{L}|)$, and a longitudinal polarization $(L_z = 0)$. (See Figure 1.)
- Evaluate $R_z(\alpha)\vec{r}(t)$ for each solution $\vec{r}(t)$. What is the physical interpretation for your result?