PHYS 3090: Homework 2 (due Friday Sept. 26)

1. Consider the matrix $M=\left(\begin{array}{cc}\cos \theta e^{i \alpha} & \sin \theta e^{i \beta} \\ \sin \theta e^{i \phi} & \cos \theta e^{i \eta}\end{array}\right)$.

- What are the conditions on the phases $(\alpha, \beta, \phi, \eta)$ such that M is Hermitian for any value of θ ?
- What are the conditions on the phases $(\alpha, \beta, \phi, \eta)$ such that M is unitary for any value of θ ?

2. Consider a double-spring system, with equal masses m and spring constants k and $\frac{3}{2} k$, where x_{1} and x_{2} measure the displacements from the equilibrium (see Figure 1 left).

- What is the potential energy V ?
- Determine the normal frequencies and the normal modes.
- Suppose at $t=0$, the system had the initial condition

$$
\begin{equation*}
x_{1}(0)=0, \quad x_{2}=d, \quad \dot{x}_{1}(0)=\dot{x}_{2}(0)=0 \tag{1}
\end{equation*}
$$

Using eigenvalue methods, determine $\vec{x}(t)$ for $t>0$.

- Compute the linear momentum p_{1} and p_{2} of each of the two masses as a function of t.

Figure 1: Left: Double spring system with spring constants k and $\frac{3}{2} k$ and masses m on a frictionless surface. Right: three masses m connected by springs in a ring configuration.
3. Consider circular configuration of three masses shown in Figure 1 (right). All three masses (with mass m) and all three springs (with spring constant k) are fixed to move along the circle of radius R. Let the variables $\left(\theta_{1}, \theta_{2}, \theta_{2}\right)$ be the angular displacements of each mass from its equilibrium position.

- What is the potential energy V in terms of k, R, and θ_{i} ?
- Write the equation of motion for this system as $\ddot{\vec{\theta}}=-U \vec{\theta}$, where $\vec{\theta}=\left(\begin{array}{c}\theta_{1} \\ \theta_{2} \\ \theta_{3}\end{array}\right)$ and U is a 3×3 matrix. What is U in terms of k, m, and R ?
- What are the normal frequencies and normal modes for this system?
- Suppose at time $t=0$ all masses begin at their equilibrium positions and we give mass 1 a "kick" so that it has velocity v (and the other masses begin at rest). This corresponds to an initial condition:

$$
\begin{equation*}
\theta_{1}(0)=\theta_{2}(0)=\theta_{3}(0)=0, \quad R \dot{\theta}_{1}(0)=v, \quad \dot{\theta}_{2}(0)=\dot{\theta}_{3}(0)=0 \tag{2}
\end{equation*}
$$

Using eigenvalue methods, determine $\vec{\theta}(t)$ for $t>0$.

- Compute the angular momentum L_{1}, L_{2}, and L_{3} for each of the three masses as a function of t. Show that the total angular momentum $L_{1}+L_{2}+L_{3}$ is constant in time.

