PHYS 3090: Homework 4 (due Friday Oct. 17)

Problem 1: Show explicitly that the following functions satisfy the Cauchy-Riemann relations and identify points z, if any, where $f(z)$ is not analytic.

- $f(z)=\tan (z)$
- $f(z)=e^{1 / z}$

Problem 2: Compute the integral $\int_{z_{1}}^{z_{2}} d z z^{2}$, where $z_{1}=0$ and $z_{2}=1+2 i$, along the following contours:

- First vertically from $z=0$ to $z=2 i$, and then horizontally from $z=2 i$ to $z=1+2 i$.
- Along the straight line defined by $y=2 x$.
- Along a parabolic curve defined by $y=2 x^{2}$.

Verify that you obtain the same result for each path. (Hint: For an arbitrary path defined by $y=y(x)$, you can write $d z=d x+i d y=d x+i \frac{d y}{d x} d x$.)

Problem 3: Compute the integral $\oint_{C} d z \frac{1}{z}$, where C is a circle of unit radius, defined by $|z|=1$. (Hint: Express the integral in polar coordinates, $z=r e^{i \theta}$, and perform the integration over θ. If r is fixed, then $d z=\frac{d z}{d \theta} d \theta$.)

How does your result change if you consider C to be a circle of arbitrary radius R, defined by $|z|=R$?

