PHYS 3090: Homework 5 (due Friday Oct. 24)

Problem 1: Identify the singular points in the following functions and demonstrate whether they are poles, essential singularities, or removable singularities.

- $f(z)=\cos (z+1 / z)$
- $f(z)=\frac{z^{3}+6 z^{2}+5 z-12}{3 z^{2}-6 z+3}$
- $f(z)=\frac{z^{2}-4}{z+2}$
- $f(z)=\cot (z)-1$

If any of the above functions have poles, determine their order.

Problem 2: Compute the following contour integrals $\oint_{C} d z f(z)$, where

- $f(z)=\frac{1}{z^{2}+1}$, where C is the circle $|z|=2$
- $f(z)=\frac{1}{z^{4}+1}$, where C is the rectangle with corners at $z= \pm 2 i$ and $z=2 \pm 2 i$.
- $f(z)=\tan (z)$, where C is the circle $|z|=5$.
- $f(z)=\frac{e^{z}}{z^{2}-2 i z}$, where C is the circle $|z-2 i|=1$.

Problem 3: Consider the function $f(z)=g(z) / h(z)$, where $g(z)$ is analytic for all z. Suppose $f(z)$ has a simple pole at $z=a$.

- Show that the residue at $z=a$ is given by Res $f(a)=g(a) / h^{\prime}(a)$. (Hint: Taylor expand something!)
- For the function $f(z)=\frac{e^{z}-1}{e^{z}+1}$, determine the locations and orders for all poles and compute their residues.

