PHYS 3090: Homework 6 (due Tuesday Nov. 4)

Problem 1: Evaluate the c_{-1} term in the Laurent expansion for the following functions

- $f(z)=\frac{\cot z}{z^{2}}$ about $z=0$
- $f(z)=\frac{e^{z}}{z^{2}+1}$ about $z=i$
- $f(z)=\cos \left(z+\frac{1}{z}\right)$ about $z=0$

Problem 2: Compute $\int_{0}^{2 \pi} d \theta \frac{1}{(2-\cos \theta)^{2}}$ using contour integration.

Problem 3: Compute $\oint_{C} d z e^{a / z}$ where C is the unit circle $|z|=1$ and a is a complex number.

Problem 4: Compute the principal value of $\int_{-\infty}^{\infty} d x \frac{\cos x-1}{x^{2}}$ by contour integration.

Problem 5 (Bonus): Compute $\oint_{C} d z \frac{e^{1 / z}}{1-z}$ where C is the circle $|z|=0.1$.
Hint: Recall the infinite geometric series formula $\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}$ for $|x|<1$.

Problem 6 (Bonus): Compute $\int_{0}^{\infty} d x \frac{1}{1+x^{100}}$ by contour integration.
Hint 1: You may use the result from problem 3 in HW 5 to compute the residues.
Hint 2: Your intermediate steps may involve a finite geometric series, which can be summed as follows

$$
\begin{equation*}
\sum_{n=0}^{N} x^{n}=\frac{1-x^{N+1}}{1-x} \tag{1}
\end{equation*}
$$

Problem 7: Compute the integral $I=\int_{-\infty}^{\infty} d x \frac{e^{x}}{e^{3 x}+1}$. We are going to evaluate I using a rectangular contour C shown in Fig. 1, with sides labeled by paths $P_{1}-P_{4}$.

- Show that $f(z)=\frac{e^{z}}{e^{3 z}+1}$ has poles along the imaginary axis at $z=\frac{\pi i}{3}+\frac{2 \pi i n}{3}$, where $n=0, \pm 1$, etc.
- The original integral is $I=\lim _{R \rightarrow \infty} \int_{P_{1}} d z f(z)$. Show that $\lim _{R \rightarrow \infty} \int_{P_{3}} d z f(z)=-e^{2 \pi i / 3} I$. Hint: Use $z=x+\frac{2 \pi i}{3}$ along P_{3}.
- Show that $\lim _{R \rightarrow \infty} \int_{P_{2}} d z f(z)=\lim _{R \rightarrow \infty} \int_{P_{4}} d z f(z)=0$.

Figure 1: Rectangular contour C defined by the corners $z= \pm R$ and $z= \pm R+\frac{2 \pi i}{3}$, and sides $P_{1}-P_{4}$. The crosses show the poles.

- Combining these results, you have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{P_{1}} d z f(z)+\int_{P_{2}} d z f(z)+\int_{P_{3}} d z f(z)+\int_{P_{4}} d z f(z)=\left(1-e^{2 \pi i / 3}\right) I=\oint_{C} d z f(z) \tag{2}
\end{equation*}
$$

Now use the residue theorem to evaluate the right-hand side and solve for the original integral I.

Note: This problem is similar to Example 2.22 in the textbook.

