PHYS 3090: Homework 9 (due Friday Dec. 5)

Problem 1: The wave function for a quantum mechanical particle of mass m satisfies the Schrodinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=i \hbar \frac{\partial \Psi}{\partial t} \tag{1}
\end{equation*}
$$

Consider an initial condition $\Psi(x, 0)=N e^{-\alpha^{2} x^{2} / 2}$, where $N=\sqrt{\alpha / \sqrt{\pi}}$.

- Compute $\Psi(x, t)$. Hint: First, Fourier transform Eq. (1) with respect to x and solve for $\tilde{\Psi}(k, t)$.
- Compute $|\Psi(x, t)|^{2}$. Sketch what the solution looks like at time $t=0$ and at a later time t_{1}, as a function of x.
- Determine the uncertainties Δx and Δp. What is happening to the wave packet?
- What is the dispersion relation for Eq. (1)? What is the wave velocity as a function of k ?

This problem illustrates that systems with a nonlinear dispersion relation (i.e., $\omega / k \neq$ constant) exhibit wave packet spreading since different Fourier modes are moving with a different wave velocity.

Problem 2: Consider the wave equation for an infinite string

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{2}
\end{equation*}
$$

with the initial condition $y(x, 0)=f(x)$, where $f(x)$ is an arbitrary function, and $\dot{y}(x, 0)=0$. Using Fourier transform, show that the solution for $t>0$ is given by

$$
\begin{equation*}
y(x, t)=\frac{1}{2}(f(x-v t)+f(x+v t)) . \tag{3}
\end{equation*}
$$

Hint: First, compute the Fourier transform $Y(k, t)$ in terms of $F(k)$, the Fourier transform for $f(x)$.
This shows that an initial displacement in the string separates into two oppositely-moving traveling waves that maintain the initial shape $f(x)$, each with half the amplitude.

