
PHYS 3090: Homework 9 (due Friday Dec. 5)

Problem 1: The wave function for a quantum mechanical particle of mass m satisfies the Schrodinger
equation
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• Compute Ψ(x, t). Hint: First, Fourier transform Eq. (1) with respect to x and solve for Ψ̃(k, t).

• Compute |Ψ(x, t)|2. Sketch what the solution looks like at time t = 0 and at a later time t1, as a
function of x.

• Determine the uncertainties ∆x and ∆p. What is happening to the wave packet?

• What is the dispersion relation for Eq. (1)? What is the wave velocity as a function of k?

This problem illustrates that systems with a nonlinear dispersion relation (i.e., ω/k 6= constant) exhibit wave
packet spreading since different Fourier modes are moving with a different wave velocity.

Problem 2: Consider the wave equation for an infinite string
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with the initial condition y(x, 0) = f(x), where f(x) is an arbitrary function, and ẏ(x, 0) = 0. Using Fourier
transform, show that the solution for t > 0 is given by
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Hint: First, compute the Fourier transform Y (k, t) in terms of F (k), the Fourier transform for f(x).

This shows that an initial displacement in the string separates into two oppositely-moving traveling waves
that maintain the initial shape f(x), each with half the amplitude.


