PHYS 3090: Homework 1 (due Friday Sept. 18)

Problem 1 (5 points): Let $\vec{u}=\binom{2}{-i}, \vec{v}=\binom{2-i}{2 i}$, and $a=2 i-2$. Compute $\langle\vec{u}, \vec{v}\rangle$ and $\langle a \vec{u}, \vec{v}\rangle$.
Problem 2 (15 points): Find the eigenvalues λ_{1}, λ_{2} for the Hermitian matrix $M=\left(\begin{array}{cc}3 & 2 i \\ -2 i & 0\end{array}\right)$. Find any matrix R such that $R^{\dagger} M R=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$. Show that R is unitary.

Problem 3 (20 points): Consider a vector $\vec{v}=\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$ in \mathbb{R}^{3} (3d space).

- Find the 3×3 rotation matrix $R_{z}(\alpha)$ that rotates \vec{v} about the \hat{e}_{z} axis by an angle α. Similarly, find the rotation matrices $R_{x}(\alpha)$ and $R_{y}(\alpha)$ that rotate \vec{v} about the \hat{e}_{x} and \hat{e}_{y} axes, respectively. (10 points)
- Show that two rotations about the same axis commute by proving $R_{z}(\alpha) R_{z}(\theta)=R_{z}(\theta) R_{z}(\alpha)$. Show that two rotations about different axes do not commute. (Note: Two matrices A and B commute if $A B=B A$.) (10 points)

Problem 4 (5 points): The equation for a simple harmonic oscillator is $\ddot{x}=-\omega^{2} x$, where ω is the frequency of the oscillator. The most general solution is

$$
\begin{equation*}
x(t)=a \cos (\omega t)+b \sin (\omega t), \tag{1}
\end{equation*}
$$

where a and b are real numbers.
Show that the solution

$$
\begin{equation*}
x(t)=\operatorname{Re}\left(c e^{i \omega t}\right), \tag{2}
\end{equation*}
$$

where c is a complex number, is equivalent to Eq. (1) by relating c to a and b.
Problem 5 (25 points): The equation of motion for a 3d simple harmonic oscillator is $\ddot{\vec{r}}=-\omega^{2} \vec{r}$, where $\vec{r}(t)=\left(\begin{array}{c}x(t) \\ y(t) \\ z(t)\end{array}\right)$. Similar to problem 5, the most general solution can be expressed as

$$
\begin{equation*}
\vec{r}(t)=\operatorname{Re}\left(\vec{c} e^{i \omega t}\right) \tag{3}
\end{equation*}
$$

where \vec{c} is an arbitrary three-component complex vector.

- Show that Eq. (3) solves the equation of motion for any vector \vec{c}. (5 points)

Next, we will see how different choices for \vec{c} leads to different physical behaviors for $\vec{r}(t)$. In particular, we focus on the connection between rotations and angular momentum, which appears in many physical contexts.

- For the rotation matrix

$$
R_{x}(\alpha)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right)
$$

determine the eigenvalues $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ and eigenvectors $\left(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right)$. (5 points)

- Evaluate $\vec{r}(t)$ separately for each eigenvector by setting $\vec{c}=\vec{u}_{i}$, as follows (5 points):

$$
\begin{equation*}
\vec{r}_{1}(t)=\operatorname{Re}\left(\vec{u}_{1} e^{i \omega t}\right), \quad \vec{r}_{2}(t)=\operatorname{Re}\left(\vec{u}_{2} e^{i \omega t}\right), \quad \vec{r}_{3}(t)=\operatorname{Re}\left(\vec{u}_{3} e^{i \omega t}\right) . \tag{5}
\end{equation*}
$$

- Evaluate the angular momentum vector $\vec{L}=\vec{r} \times \vec{p}$ for each of the solutions obtained above (recall $\vec{p}=m \dot{\vec{r}}$, where m is the mass). Show that the solutions have either $\vec{L}=0$ or \vec{L} oriented along the x axis. (5 points)
- Evaluate $R_{x}(\alpha) \vec{r}_{i}(t)$ for each solution $i=1,2,3$. (5 points)

