PHYS 3090: Homework 1 (due Friday Sept. 18)

Problem 1 (5 points): Let $\vec{u} = \begin{pmatrix} 2 \\ -i \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 2-i \\ 2i \end{pmatrix}$, and a = 2i - 2. Compute $\langle \vec{u}, \vec{v} \rangle$ and $\langle a\vec{u}, \vec{v} \rangle$.

Problem 2 (15 points): Find the eigenvalues λ_1, λ_2 for the Hermitian matrix $M = \begin{pmatrix} 3 & 2i \\ -2i & 0 \end{pmatrix}$. Find any matrix R such that $R^{\dagger}MR = \text{diag}(\lambda_1, \lambda_2)$. Show that R is unitary.

Problem 3 (20 points): Consider a vector $\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$ in \mathbb{R}^3 (3d space).

- Find the 3×3 rotation matrix $R_z(\alpha)$ that rotates \vec{v} about the \hat{e}_z axis by an angle α . Similarly, find the rotation matrices $R_x(\alpha)$ and $R_y(\alpha)$ that rotate \vec{v} about the \hat{e}_x and \hat{e}_y axes, respectively. (10 points)
- Show that two rotations about the same axis commute by proving $R_z(\alpha)R_z(\theta) = R_z(\theta)R_z(\alpha)$. Show that two rotations about different axes do not commute. (Note: Two matrices A and B commute if AB = BA.) (10 points)

Problem 4 (5 points): The equation for a simple harmonic oscillator is $\ddot{x} = -\omega^2 x$, where ω is the frequency of the oscillator. The most general solution is

$$x(t) = a\cos(\omega t) + b\sin(\omega t), \qquad (1)$$

where a and b are real numbers. Show that the solution

$$x(t) = \operatorname{Re}(c \, e^{i\omega t})\,,\tag{2}$$

where c is a complex number, is equivalent to Eq. (1) by relating c to a and b.

Problem 5 (25 points): The equation of motion for a 3d simple harmonic oscillator is $\ddot{\vec{r}} = -\omega^2 \vec{r}$, where $\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$. Similar to problem 5, the most general solution can be expressed as

$$\vec{r}(t) = \operatorname{Re}\left(\vec{c}\,e^{i\omega t}\right),\tag{3}$$

where \vec{c} is an arbitrary three-component complex vector.

• Show that Eq. (3) solves the equation of motion for any vector \vec{c} . (5 points)

Next, we will see how different choices for \vec{c} leads to different physical behaviors for $\vec{r}(t)$. In particular, we focus on the connection between rotations and angular momentum, which appears in many physical contexts.

• For the rotation matrix

$$R_x(\alpha) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\alpha & -\sin\alpha\\ 0 & \sin\alpha & \cos\alpha \end{pmatrix}, \tag{4}$$

determine the eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$ and eigenvectors $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$. (5 points)

• Evaluate $\vec{r}(t)$ separately for each eigenvector by setting $\vec{c} = \vec{u}_i$, as follows (5 points):

$$\vec{r}_1(t) = \operatorname{Re}\left(\vec{u}_1 \, e^{i\omega t}\right), \quad \vec{r}_2(t) = \operatorname{Re}\left(\vec{u}_2 \, e^{i\omega t}\right), \quad \vec{r}_3(t) = \operatorname{Re}\left(\vec{u}_3 \, e^{i\omega t}\right). \tag{5}$$

- Evaluate the angular momentum vector $\vec{L} = \vec{r} \times \vec{p}$ for each of the solutions obtained above (recall $\vec{p} = m\dot{\vec{r}}$, where *m* is the mass). Show that the solutions have either $\vec{L} = 0$ or \vec{L} oriented along the *x* axis. (5 points)
- Evaluate $R_x(\alpha)\vec{r_i}(t)$ for each solution i = 1, 2, 3. (5 points)