PHYS 3090: Homework 2 (due Friday Sept. 25)

Problem 1 (20 points): Consider a double-spring system, with equal masses m and spring constants k and $\frac{3}{2}k$, where x_1 and x_2 measure the displacements from the equilibrium (see Figure 1 left).

- What is the potential energy V? (5 points)
- Determine the normal frequencies and the normal modes. (5 points)
- Suppose at t = 0, the system had the initial condition

$$x_1(0) = d, \quad x_2 = 0, \quad \dot{x}_1(0) = \dot{x}_2(0) = 0.$$
 (1)

Using eigenvalue methods, determine $\vec{x}(t)$ for t > 0. (5 points)

• Compute the linear momentum p_1 and p_2 of each of the two masses as a function of t. (5 points)

Problem 2 (30 points): Consider circular configuration of three masses shown in Figure 1 (right). All three masses (with mass m) and all three springs (with spring constant k) are fixed to move along the circle of radius R. Let the variables $(\theta_1, \theta_2, \theta_2)$ be the angular displacements of each mass from its equilibrium position.

- What is the potential energy V in terms of k, R, and θ_i ? (5 points)
- Note that for circular motion, Newton's second law can be expressed as

$$m\ddot{\theta}_i = -\frac{1}{R^2}\frac{\partial V}{\partial \theta_i}$$

Write the equation of motion for this system as $\ddot{\vec{\theta}} = -U\vec{\theta}$, where $\vec{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}$ and U is a 3×3 matrix.

What is U in terms of k and m? (5 points)

- What are the normal frequencies and normal modes for this system? (5 points)
- Suppose at time t = 0 all masses begin at their equilibrium positions and we give mass 1 a "kick" so that it has velocity v (and the other masses begin at rest). This corresponds to an initial condition:

$$\theta_1(0) = \theta_2(0) = \theta_3(0) = 0, \qquad R\dot{\theta}_1(0) = v, \quad \dot{\theta}_2(0) = \dot{\theta}_3(0) = 0.$$
 (2)

Using eigenvalue methods, determine $\vec{\theta}(t)$ for t > 0. (10 points)

• Compute the angular momentum L_1 , L_2 , and L_3 for each of the three masses as a function of t. Show that the total angular momentum $L_1 + L_2 + L_3$ is constant in time. (5 points)

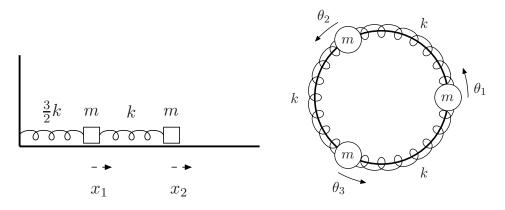


Figure 1: Left: Double spring system with spring constants k and $\frac{3}{2}k$ and masses m on a frictionless surface. Right: three masses m connected by springs in a ring configuration.

Problem 3 (25 points): In the quantum mechanical description of angular momentum, the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(3)

play an important role. Defining $\vec{\sigma} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix}$, any real three-component vector $\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$ can be expressed as a 2 × 2 traceless Hermitian matrix M:

$$M = \vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i = \begin{pmatrix} v_z & v_x - iv_y \\ v_x + iv_y & -v_z \end{pmatrix}$$
(4)

- Show that $(\vec{v} \cdot \vec{\sigma})^2 = |\vec{v}|^2 \mathbb{1}$ for any \vec{v} , where $\mathbb{1}$ is the 2 × 2 identity matrix. (5 points)
- Show that $\exp(iM) = \cos |\vec{v}| \, \mathbb{1} + i(\hat{v} \cdot \vec{\sigma}) \sin |\vec{v}|$. (Note: $\hat{v} = \vec{v}/|\vec{v}|$.) Use your result to compute $\exp\left(\begin{array}{cc} i\sqrt{2\pi} & -\sqrt{2\pi} \\ \sqrt{2\pi} & -i\sqrt{2\pi} \end{array}\right)$. (10 points)
- Consider a new, more general matrix $M = v_0 \mathbb{1} + \vec{v} \cdot \vec{\sigma} = \begin{pmatrix} v_0 + v_z & v_x iv_y \\ v_x + iv_y & v_0 v_z \end{pmatrix}$, where now M is no longer traceless. What is $\exp(iM)$? (10 points)