PHYS 3090: Homework 3 (due Friday Oct. 9)

1. Let $z=-2-2$ i. Compute $\log (z)$, taking the principal branch with $0 \leq \arg (z)<2 \pi$. (5 points)
2. Express $z=\frac{2+i}{1-i}$ in the form $z=x+i y$. (5 points)
3. Show that for any complex numbers z_{1} and z_{2}, the following are true:

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ (5 points)
- $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ (5 points)
- $\arg \left(z_{1} / z_{2}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$ (5 points)

4. Find the solutions of the equation $z^{4}-16 i=0$. (10 points)
5. Find the solutions of the equation $z^{4}-6 z^{2}+8=0$. ($\mathbf{1 0}$ points)
6. Any complex function can be expressed as $f(z)=u(x, y)+i v(x, y)$, where u, v are purely real functions and $z=x+i y$. Find $u(x, y)$ and $v(x, y)$ for the following complex functions:

- $f(z)=e^{i z} / z$ (5 points)
- $f(z)=z \ln (z)$ (5 points)
- $f(z)=\cos (2 z)$ (5 points)

7. Show explicitly that the following functions satisfy the Cauchy-Riemann relations and identify points z, if any, where $f(z)$ is not analytic.

- $f(z)=\tan (z) \quad$ (5 points)
- $f(z)=e^{1 / z} \quad(5$ points $)$

