PHYS 3090: Homework 4 (due Friday Oct. 16)

Problem 1: Identify the singular points in the following functions and demonstrate whether they are poles, essential singularities, or removable singularities.

- $f(z)=\cos (z+1 / z)$
- $f(z)=\frac{z^{3}+6 z^{2}+5 z-12}{3 z^{2}-6 z+3}$
- $f(z)=\frac{z^{2}-4}{z+2}$
- $f(z)=\cot (z)-1$

If any of the above functions have poles, determine their order.

Problem 2: Compute the integral $\int_{z_{1}}^{z_{2}} d z z^{2}$, where $z_{1}=0$ and $z_{2}=1+2 i$, along the following contours:

- First vertically from $z=0$ to $z=2 i$, and then horizontally from $z=2 i$ to $z=1+2 i$.
- Along the straight line defined by $y=2 x$.
- Along a parabolic curve defined by $y=2 x^{2}$.

Verify that you obtain the same result for each path. (Hint: For an arbitrary path defined by $y=y(x)$, you can write $d z=d x+i d y=d x+i \frac{d y}{d x} d x$.)

Problem 3: Consider the function $f(z)=g(z) / h(z)$, where $g(z)$ is analytic for all z. Suppose $f(z)$ has a simple pole at $z=a$.

- Show that the residue at $z=a$ is given by $\operatorname{Res} f(a)=g(a) / h^{\prime}(a)$. (Hint: Taylor expand something!)
- For the function $f(z)=\frac{e^{z}-1}{e^{z}+1}$, determine the locations and orders for all poles and compute their residues.

