PHYS 3090: Homework 5 (due Friday Oct. 23)

Problem 1: Compute the following contour integrals $\oint_{C} d z f(z)$, where

- $f(z)=\frac{1}{z^{2}+1}$, where C is the circle $|z|=2$ (5 points)
- $f(z)=\frac{1}{z^{4}+1}$, where C is the rectangle with corners at $z= \pm 2 i$ and $z=2 \pm 2 i$ (5 points)
- $f(z)=\tan (z)$, where C is the circle $|z|=5$ (5 points)
- $f(z)=\frac{e^{z}}{z^{2}-2 i z}$, where C is the circle $|z-2 i|=1$ (5 points)

Problem 2: Evaluate the c_{-1} term in the Laurent expansion for the following functions

- $f(z)=\frac{\cot z}{z^{2}}$ about $z=0$ (5 points)
- $f(z)=\frac{e^{z}}{z^{2}+1}$ about $z=i$ (5 points)
- $f(z)=\cos \left(z+\frac{1}{z}\right)$ about $z=0$ (5 points)

Problem 3: Compute $\oint_{C} d z e^{a / z}$ where C is the unit circle $|z|=1$ and a is a complex number. (5 points)

Problem 4: Compute $\oint_{C} d z \frac{e^{1 / z}}{1-z}$ where C is the circle $|z|=0.1$. (10 points)
Hint: Recall the infinite geometric series formula $\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}$ for $|x|<1$.

