PHYS 3090: Homework 6 (due Wednesday Nov. 2)

The following problem explores Fourier transform within the context of quantum mechanics. In quantum mechanics, the wavenumber k is related to the momentum p of a particle by $p=\hbar k$.

Problem 1 (24 points): The wave function $\Psi(x, t)$ for a free quantum mechanical particle of mass m satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=i \hbar \frac{\partial \Psi}{\partial t} . \tag{1}
\end{equation*}
$$

$\Psi(x, t)$ is known as the position-space wave function since the quantity $|\Psi(x, t)|^{2}$ describes the probability density for finding the particle at position x at time t. The Fourier transform of the wavefunction

$$
\begin{equation*}
\tilde{\Psi}(k, t)=\mathcal{F}[\Psi(x, t)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{-i k x} \Psi(x, t) \tag{2}
\end{equation*}
$$

is known as the momentum-space wave function and the quantity $|\tilde{\Psi}(k, t)|^{2}$ gives the probability density for finding the particle with wavenumber k (or momentum $p=\hbar k$) at time t.

Consider an initial condition $\Psi(x, 0)=N e^{-\alpha^{2} x^{2} / 2}$, where $N=\sqrt{\alpha / \sqrt{\pi}}$, which is known as a Gaussian wave packet. The constant N is determined by the normalization condition $\int_{-\infty}^{\infty} d x|\Psi(x, 0)|^{2}=1$, which says that the total probability of finding the particle at any position x is equal to one.
(a) Compute $\tilde{\Psi}(k, 0)$. (3 points)
(b) The uncertainty Δx describes how spread out the wavefunction is in position. It is defined by

$$
\begin{equation*}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \tag{3}
\end{equation*}
$$

where $\langle x\rangle=\int_{-\infty}^{\infty} d x x|\Psi(x, t)|^{2}$ and $\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} d x x^{2}|\Psi(x, t)|^{2}$ are the expectation values of the position and position squared, respectively. Compute Δx at time $t=0$. (3 points)

Hint: It may be helpful to know $\int_{-\infty}^{\infty} d x x^{2} e^{-a^{2} x^{2}}=\frac{\sqrt{\pi}}{2 a^{3}}$. This equation can be proved by taking the basic Gaussian integral formula $\int_{-\infty}^{\infty} d x e^{-a^{2} x^{2}}=\frac{\sqrt{\pi}}{a}$ and acting on both sides with $\frac{\partial}{\partial a}$.
(c) Similar to part (b), the uncertainty Δk describes how spread out the wavefunction is in wavenumber (or momentum). It is defined by

$$
\begin{equation*}
\Delta k=\sqrt{\left\langle k^{2}\right\rangle-\langle k\rangle^{2}} \tag{4}
\end{equation*}
$$

where $\langle k\rangle=\int_{-\infty}^{\infty} d k k|\tilde{\Psi}(k, t)|^{2}$ and $\left\langle k^{2}\right\rangle=\int_{-\infty}^{\infty} d k k^{2}|\tilde{\Psi}(k, t)|^{2}$. Compute Δk at time $t=0$. (3 points)
(d) The uncertainty principle states that

$$
\begin{equation*}
\Delta x \Delta p \geq \frac{\hbar}{2} \tag{5}
\end{equation*}
$$

By multiplying your answers to parts (b) and (c), times an additional factor of \hbar, show that the Gaussian wavepacket at $t=0$ saturates the lower bound of the uncertainty principle. (1 point)
(e) Compute $\Psi(x, t)$. Hint: Fourier transform Eq. (1) with respect to x, solve for $\tilde{\Psi}(k, t)$, and then take the inverse Fourier transform. (5 point)
(f) Compute $|\Psi(x, t)|^{2}$. Sketch what the solution looks like at time $t=0$ and at a later time t_{1}, as a function of x. (3 point)
(g) Determine the uncertainties Δx and Δk at time t. What is happening to the wave packet? (3 points)
(h) What is the dispersion relation for Eq. (1)? What is the wave velocity $\partial \omega / \partial k$ as a function of k ? This problem illustrates that systems with a nonlinear dispersion relation (i.e., $\omega / k \neq$ constant) exhibit wave packet spreading since different Fourier modes are moving with a different wave velocity. (3 points)

Problem 2 (6 points): Consider the wave equation for an infinite string

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{6}
\end{equation*}
$$

with the initial condition $y(x, 0)=f(x)$, where $f(x)$ is an arbitrary function, and $\dot{y}(x, 0)=0$. Using Fourier transform, show that the solution for $t>0$ is given by

$$
\begin{equation*}
y(x, t)=\frac{1}{2}(f(x-v t)+f(x+v t)) . \tag{7}
\end{equation*}
$$

Hint: First, compute the Fourier transform $Y(k, t)$ in terms of $F(k)$, the Fourier transform for $f(x)$.
This shows that an initial displacement in the string separates into two oppositely-moving traveling waves that maintain the initial shape $f(x)$, each with half the amplitude.

