PHYS 3090: Homework 8 (due never)

Problem 1: $S U(2)$ matrices can be represented as

$$
\begin{equation*}
R=\exp \left(\frac{i}{2} \vec{\alpha} \cdot \vec{\sigma}\right) \tag{1}
\end{equation*}
$$

where $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a vector in which the components are the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ are the parameters of the group. Let $\alpha=|\vec{\alpha}|$ and $\hat{\alpha}=\vec{\alpha} / \alpha$.

- Show that $(\hat{\alpha} \cdot \vec{\sigma})^{2}=\mathbb{1}$ for any $\vec{\alpha}$, where $\mathbb{1}$ is the 2×2 identity matrix.
- Using this relation, show that

$$
\begin{equation*}
R=\cos \left(\frac{\alpha}{2}\right) \mathbb{1}+i(\hat{\alpha} \cdot \vec{\sigma}) \sin \left(\frac{\alpha}{2}\right) . \tag{3}
\end{equation*}
$$

- Check that Eq. (3) is unitary.
- By Taylor expanding Eq. (3) to linear order in α_{1}, α_{2} and α_{3}, verify that the generators are $T_{i}=\frac{1}{2} \sigma_{i}$.

