PHYS 3090: Homework 2 (due Wed. Sept. 27)

Problem 1 (12 points): Identify the singular points in the following functions and demonstrate whether they are poles, essential singularities, or removable singularities. For any poles or essential singularities, determine their residues.
(a) $f(z)=\cos (z+1 / z)$ (3 points)
(b) $f(z)=\frac{z^{3}+6 z^{2}+5 z-12}{3 z^{2}-6 z+3}$ (3 points)
(c) $f(z)=\frac{1-\cos z}{z^{2}}$ (3 points)
(d) $f(z)=\cot (z) / z^{2}$ (3 points)

The following problem derives a useful formula for computing residues.
Problem 2 (6 points): Consider the function $f(z)=g(z) / h(z)$, where $g(z)$ is entire.
(a) Show that if $f(z)$ has a simple pole at $z=a$, then $\operatorname{Res} f(a)=g(a) / h^{\prime}(a)$. Hint: Taylor expand $h(z)$. (3 points)
(b) For the function $f(z)=\frac{e^{z}-1}{e^{z}+1}$, determine the locations and orders for all poles and compute their residues. (3 points)

Problem 3 (9 points): Compute the following contour integrals $\oint_{C} d z f(z)$, where
(a) $f(z)=\frac{1}{z^{2}+1}$, where C is the circle $|z-i|=1$ (3 points)
(b) $f(z)=\frac{1}{z^{4}+1}$, where C is the rectangle with corners at $z= \pm 2 i$ and $z=2 \pm 2 i$ (3 points)
(c) $f(z)=\tan (z)$, where C is the circle $|z|=5$ (3 points)

This problem is a bit challenging. Don't get confused: there is a simple pole at $z=1$, but this is not the singular point you should be concerned with.

Problem 4 (3 points): Compute $\oint_{C} d z \frac{e^{1 / z}}{1-z}$ where C is the circle $|z|=0.1$. Hint: you will need to use the formula for an infinite geometric series: $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$ for $|z|<1$.

Picard's theorem is a remarkable result which says that if $f(z)$ has an essential singularity at $z=a$, then within any finite neighborhood of a, no matter how small, $f(z)$ can have any and every complex value (except possibly one) an infinite number of times. The goal of this problem is to see how this works for a simple example.

Problem 5 (7 points): Suppose the function $f(z)$ has a singular point at $z=0$. Let's define a neighborhood around $z=0$ according the condition $|z|<\epsilon$, where ϵ is some positive real number. The smaller ϵ is, the smaller the neighborhood around $z=0$. If $z=0$ is an essential singularity, then no matter how small we take ϵ, we can find infinitely many solutions to the equation $f(z)=c$ within our neighborhood, where c is any complex number (with possibly one exception). This is not the case if $z=0$ is a pole.

For simplicity, we will consider $c=1$ in this problem. (The generalization to arbitrary c is left as an exercise for the curious student.)
(a) First, let's show that Picard's theorem does not hold if $f(z)$ has a pole at $z=0$. Consider the function $f(z)=1 / z^{n}$, where n is a positive integer. Sketch the locations of the solutions to the equation $f(z)=1$ in the complex plane. Argue that if ϵ is sufficiently small (in this case, smaller than 1), then no solutions to $f(z)=1$ are enclosed within the neighborhood. (3 points)
(b) Now, let's suppose $f(z)$ has an essential singularity at $z=0$. Consider the function $f(z)=e^{1 / z}$. Sketch the locations of the solutions to the equation $f(z)=1$ in the complex plane. Argue that no matter how small ϵ is, there are infinitely many solutions within the neighborhood. (3 points)
(c) What is the "one exception" for the function $f(z)=e^{1 / z}$? That is, for what value of c is there no solution to the equation $f(z)=c$ within our neighborhood, for any value of ϵ ? (1 point)

This is a nice problem, suggested by a student, in which you derive the Cauchy-Riemann relations in polar coordinates.

Problem 6 (3 points): Consider an analytic function $f(z)=u(x, y)+i v(x, y)$. Show that if u, v are expressed in polar coordinates (r, θ), then the Cauchy-Riemann relations are:

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta} \tag{1}
\end{equation*}
$$

