PHYS 3090: Homework 3 (due Wednesday Oct. 4)

Problem 1: Compute $\int_{0}^{2 \pi} d \theta \frac{1}{(2-\cos \theta)^{2}}$ using contour integration. (5 points)

Problem 2: Compute p.v. $\int_{-\infty}^{\infty} d x \frac{\cos x-1}{x^{2}}$ by contour integration. (5 points)

Problem 3: Compute p.v. $\int_{0}^{\infty} d x \frac{1}{1+x^{100}}$ by contour integration. (5 points)
Hint 1: You may use the result from problem 2a in HW 2 to compute the residues.
Hint 2: The equation for a finite geometric series $\sum_{n=0}^{N} x^{n}=\frac{1-x^{N+1}}{1-x}$ might be useful.

Problem 4 (10 points): Compute the integral $I=$ p.v. $\int_{-\infty}^{\infty} d x \frac{e^{x}}{e^{3 x}+1}$. We are going to evaluate I using a rectangular contour C shown in Fig. 1, with sides labeled by paths $P_{1}-P_{4}$.
(a) Show that $f(z)=\frac{e^{z}}{e^{3 z}+1}$ has poles along the imaginary axis at $z=\frac{\pi i}{3}+\frac{2 \pi i n}{3}$, where $n=0, \pm 1$, etc. (2 points)
(b) The original integral is $I=\int_{P_{1}} d z f(z)$. Show that $\int_{P_{3}} d z f(z)=-e^{2 \pi i / 3} I$. (2 points)
(c) Show that $\int_{P_{2}} d z f(z)=\int_{P_{4}} d z f(z)=0$ in the limit $R \rightarrow \infty$. (1 point)
(d) Combining these results, you have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{P_{1}} d z f(z)+\int_{P_{2}} d z f(z)+\int_{P_{3}} d z f(z)+\int_{P_{4}} d z f(z)=\left(1-e^{2 \pi i / 3}\right) I=\oint_{C} d z f(z) \tag{1}
\end{equation*}
$$

Now use the residue theorem to evaluate the right-hand side and solve for the original integral I. (5 points)

Figure 1: Rectangular contour C defined by the corners $z= \pm R$ and $z= \pm R+\frac{2 \pi i}{3}$, and sides $P_{1}-P_{4}$. The crosses show the poles.

