PHYS 3090: Homework 3 (due Wednesday Oct. 4)

Problem 1: Compute $\int_0^{2\pi} d\theta \frac{1}{(2-\cos\theta)^2}$ using contour integration. (5 points)

Problem 2: Compute p.v. $\int_{-\infty}^{\infty} dx \frac{\cos x - 1}{x^2}$ by contour integration. (5 points)

Problem 3: Compute p.v. $\int_0^\infty dx \frac{1}{1+x^{100}}$ by contour integration. (5 points)

Hint 1: You may use the result from problem 2a in HW 2 to compute the residues.

Hint 2: The equation for a finite geometric series $\sum_{n=0}^{N} x^n = \frac{1-x^{N+1}}{1-x}$ might be useful.

Problem 4 (10 points): Compute the integral $I = p.v. \int_{-\infty}^{\infty} dx \frac{e^x}{e^{3x}+1}$. We are going to evaluate I using a rectangular contour C shown in Fig. 1, with sides labeled by paths $P_1 - P_4$.

- (a) Show that $f(z) = \frac{e^z}{e^{3z}+1}$ has poles along the imaginary axis at $z = \frac{\pi i}{3} + \frac{2\pi i n}{3}$, where $n = 0, \pm 1, etc.$ (2 points)
- (b) The original integral is $I = \int_{P_1} dz f(z)$. Show that $\int_{P_3} dz f(z) = -e^{2\pi i/3} I$. (2 points)
- (c) Show that $\int_{P_2} dz f(z) = \int_{P_4} dz f(z) = 0$ in the limit $R \to \infty$. (1 point)
- (d) Combining these results, you have

$$\lim_{R \to \infty} \int_{P_1} dz f(z) + \int_{P_2} dz f(z) + \int_{P_3} dz f(z) + \int_{P_4} dz f(z) = \left(1 - e^{2\pi i/3}\right) I = \oint_C dz f(z) \,. \tag{1}$$

Now use the residue theorem to evaluate the right-hand side and solve for the original integral I. (5 points)

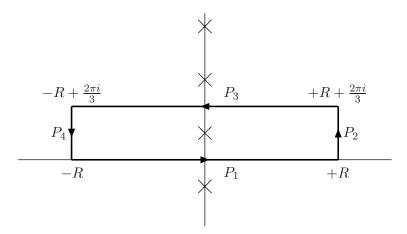


Figure 1: Rectangular contour C defined by the corners $z = \pm R$ and $z = \pm R + \frac{2\pi i}{3}$, and sides P_1 - P_4 . The crosses show the poles.