PHYS 3090: Homework 5 (due Wednesday Oct. 26)

Problem 1 (5 points): A function $f(t)$ has a Laplace transform

$$
F(s)=\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}},
$$

where a is a real, positive number. Compute $f(t)$ using the Bromwich integral.

Problem 2 (10 points):

(a) Let $f(t)$ be a function with Laplace transform $F(s)$. Prove the following: (3 points)

$$
\int_{s}^{\infty} d s^{\prime} F\left(s^{\prime}\right)=\mathcal{L}[f(t) / t]
$$

(b) Using the above result, compute $\mathcal{L}\left[\frac{\sin t}{t}\right]$. (4 points)
(c) Recall that the sine function is given by

$$
\operatorname{Si}(a)=\int_{0}^{a} d t \frac{\sin t}{t}
$$

Using the results of parts (a) and (b), compute $\operatorname{Si}(\infty)$. (3 points)

Problem 3 (10 points): Suppose a radioactive isotope, with decay constant λ, starts leaking from a nuclear reactor at $t=0$ with rate $R(t)$. The number of radioactive atoms present outside the leak satisfies the rate equation

$$
\begin{equation*}
\dot{n}(t)+\lambda n(t)=R(t), \tag{1}
\end{equation*}
$$

where λ is the decay rate. We also suppose the initial condition is $n(0)=0$.
(a) Let's suppose that $R(t)=0$ for $t<0$ and that the leak "turns on" at $t=0$. For $t \geq 0$, the leak rate is given by a periodic function $R(t)=R_{0}(1-\cos (\omega t))$, where R_{0} and ω are positive, real constants. Determine $n(t)$ by taking the Laplace transform of Eq. (1). (5 points)
(b) Compute the Green's function $g(t, \tau)$ for the above rate equation and use this to write the solution $n(t)$ for arbitrary $R(t)$. For the rate $R(t)$ given in part (a), verify that the Green's function solution for $n(t)$ is the same as what you found in part (a). (5 points)

Problem 4 (5 points): In class, we showed that

$$
\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}
$$

for any integer $n \geq 0$. In this problem, we will compute $\mathcal{L}\left[t^{a}\right]$ for a positive non-integer power a.
(a) Prove that

$$
\mathcal{L}\left[t^{a}\right]=\frac{\Gamma(a+1)}{s^{a+1}} .
$$

Here, we have introduced the following function

$$
\Gamma(a)=\int_{0}^{\infty} d x x^{a-1} e^{-x}
$$

which is known as the gamma function and cannot be expressed in terms of elementary functions. (1 point)
(b) Prove that $\Gamma(n+1)=n$! for any integer $n \geq 0$. (2 points)
(c) The gamma function generalizes the notion of a factorial to numbers beyond integers. Recall that the factorial is defined recursively according to the relation $n!=n(n-1)$! for integers $n>0$. Show that the gamma function satisfies the same relation

$$
\Gamma(a+1)=a \Gamma(a)
$$

for any value of $a>0$, i.e., not necessarily an integer. (2 points)

Problem 5 (10 points): The goal of this problem is to compute $\mathcal{L}\left[\ln ^{n} t\right]$ for any integer power $n>0$. Note $\ln ^{n} t$ is a shorthand notation for $(\ln t)^{n}$.
(a) Show that

$$
\mathcal{L}[\ln t]=-\frac{\gamma_{E}+\ln s}{s}
$$

where γ_{E} is the Euler-Mascheroni constant, given by

$$
\gamma_{E}=-\int_{0}^{\infty} d x e^{-x} \ln x=0.5772156649 \ldots
$$

Hint: This is simple to prove if you use the fact that $\ln t=\ln (s t)-\ln s$ and make an appropriate change of variables. (3 points)
(b) Prove that the nth derivative of the gamma function, evaluated at $a=1$, is given by

$$
\begin{equation*}
\Gamma^{(n)}(1) \equiv \lim _{a \rightarrow 1} \frac{\partial^{n}}{\partial a^{n}} \Gamma(a)=\int_{0}^{\infty} d x \ln ^{n} x e^{-x} \tag{2}
\end{equation*}
$$

Note that $\Gamma^{\prime}(1)=-\gamma_{E}$ (2 points).
(c) Using Eq. (2), derive a general formula for $\mathcal{L}\left[\ln ^{n} t\right]$. (5 points)

