PHYS 3090: Homework 1 (due Wednesday Sept. 19)

The following problems cover some basics of complex variables.
Problem 1: Let $z=-1+i$. Compute the following:
(a) $\arg z$ (1 points)
(b) $|z|$ (1 points)
(c) $\ln (z)$, taking the principal branch with $0 \leq \arg (z)<2 \pi$ (2 points)

Problem 2: Express $z=\frac{4-2 i}{1+i}$ in the form $z=x+i y$. (2 points)
Problem 3: Show that for any complex numbers z_{1} and z_{2}, the following are true:
(a) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ (2 points)
(b) $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ (2 points)
(c) $\arg \left(z_{1} / z_{2}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$ (2 points)

Problem 4: Find the unique solutions of the equation $z^{4}=-16 i$. (3 points)
Any complex function can be expressed as $f(z)=u(x, y)+i v(x, y)$, where u, v are purely real functions and $z=x+i y$. The following problems practice finding u and v.

Problem 5: Find $u(x, y)$ and $v(x, y)$ for the complex function $f(z)=e^{1 / z}$. (3 points)
Problem 6: For the complex function $f(z)=\tan (z)$, show the following: (3 points)

$$
\begin{equation*}
u(x, y)=\frac{\sin (2 x)}{\cos (2 x)+\cosh (2 y)}, \quad v(x, y)=\frac{\sinh (2 y)}{\cos (2 x)+\cosh (2 y)} \tag{1}
\end{equation*}
$$

This problem practices computing complex integrals through direct integration. You should get the same answer for (a)-(c), which follows as a consequence of Cauchy's theorem since $f(z)=z^{2}$ is an entire function.

Problem 7: Compute the integral $\int_{z_{1}}^{z_{2}} d z z^{2}$, where $z_{1}=1$ and $z_{2}=i$, along each of the following contours:
(a) First horizontally from $z=1$ to $z=0$, and then vertically from $z=0$ to $z=i$. (3 points)
(b) Along the straight line defined by $y=1-x$. Hint: For an arbitrary path defined by $y=y(x)$, you can write $d z=d x+i d y=d x+i \frac{d y}{d x} d x$. (3 points)
(c) Along the unit circle defined by $|z|=1$. Hint: write z in polar form and use $d z=\frac{d z}{d \theta} d \theta$. (3 points)

