PHYS 3090: Homework 3 (due Wednesday Oct. 3)

Problem 1: Compute $\int_0^{2\pi} d\theta \frac{1}{(2-\cos\theta)^2}$ using contour integration. (5 points)

Problem 2: Compute p.v. $\int_{-\infty}^{\infty} dx \frac{\cos x - 1}{x^2}$ by contour integration. (5 points)

Problem 3: Compute p.v. $\int_0^\infty dx \frac{1}{1+x^{100}}$ by contour integration. (5 points)

Hint 1: You may use the result from problem 2a in HW 2 to compute the residues. *Hint 2:* The equation for a finite geometric series $\sum_{n=0}^{N} x^n = \frac{1-x^{N+1}}{1-x}$ might be useful.

This problem is a bit challenging. Don't get confused: there is a simple pole at z = 1, but this is not the singular point you should be concerned with.

Problem 4 (5 points): Compute $\oint_C dz \frac{e^{1/z}}{1-z}$ where *C* is the circle |z| = 0.1. Hint: you will need to use the formula for an infinite geometric series: $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ for |z| < 1.