PHYS 3090: Homework 7 (due Monday Dec. 3)

Problem 1 (15 points): Consider a double-spring system, with equal masses m and spring constants k and $\frac{3}{2} k$, where x_{1} and x_{2} measure the displacements from the equilibrium (see Figure 1 left).
(a) What is the potential energy V ? (3 point)
(b) Determine the normal frequencies and the normal modes. (3 points)
(c) What is the general solution for $\vec{x}(t)$? (3 points)
(d) Suppose at $t=0$, the system had the initial condition

$$
\begin{equation*}
x_{1}(0)=1, \quad x_{2}=0, \quad \dot{x}_{1}(0)=\dot{x}_{2}(0)=0 . \tag{1}
\end{equation*}
$$

Using eigenvalue methods, determine $\vec{x}(t)$ for $t>0$. (3 points)
(e) Compute the linear momentum p_{1} and p_{2} of each of the two masses, as well as the sum $p_{1}+p_{2}$, as a function of t. (3 points)

Problem 2 (20 points): Consider circular configuration of three masses shown in Figure 1 (right). All three masses (with mass m) and all three springs (with spring constant k) are fixed to move along the circle of radius r. Let the variables $\left(\theta_{1}, \theta_{2}, \theta_{2}\right)$ be the angular displacements of each mass from its equilibrium position.
(a) What is the potential energy V in terms of k, r, and θ_{i} ? (3 points)

Figure 1: Left: Double spring system with spring constants k and $\frac{3}{2} k$ and masses m on a frictionless surface (problem 2). Right: Three masses m connected by springs in a ring configuration (problem 3).
(b) Note that for circular motion, Newton's second law can be expressed as

$$
m \ddot{\theta}_{i}=-\frac{1}{r^{2}} \frac{\partial V}{\partial \theta_{i}}
$$

Write the equation of motion for this system as $\ddot{\vec{\theta}}=-U \vec{\theta}$, where $\vec{\theta}=\left(\begin{array}{c}\theta_{1} \\ \theta_{2} \\ \theta_{3}\end{array}\right)$ and U is a 3×3 matrix. What is U in terms of k and m ? (3 points)
(c) What are the normal frequencies and normal modes for this system? (3 points)
(d) What is the general solution for $\vec{\theta}(t)$? (3 points)
(e) Suppose that all the masses are initially at rest in equilibrium $\left(\theta_{i}=\dot{\theta}_{i}=0\right)$ for $t<0$. Let's generalize the equation of motion to include a driving force term

$$
\ddot{\vec{\theta}}+U \vec{\theta}=\vec{F}(t)
$$

where the force term is

$$
\vec{F}(t)=\left(\begin{array}{c}
\delta(t) \tag{2}\\
0 \\
0
\end{array}\right)
$$

That is, mass 1 gets a "kick" at $t=0$. Using eigenvalue methods and Laplace transform, determine $\vec{\theta}(t)$ for $t>0$. (5 points)
(f) Compute the angular momentum L_{1}, L_{2}, and L_{3} for each of the three masses as a function of t. Show that the total angular momentum $L_{1}+L_{2}+L_{3}$ is constant for $t>0$. (3 points)

Problem 3 (10 points): The simplest type of quantum mechanical system is the two-state system. The unit vector $\hat{e}_{1}=\binom{1}{0}$ represents the system being in state 1 and the unit vector $\hat{e}_{2}=\binom{0}{1}$ represents the system being in state $2 .{ }^{1}$ In general, the system can be in a quantum superposition of the two states, given by

$$
\begin{equation*}
\vec{\psi}=\psi_{1} \hat{e}_{1}+\psi_{2} \hat{e}_{2}=\binom{\psi_{1}}{\psi_{2}} \tag{3}
\end{equation*}
$$

(a) Suppose at time $t=0$ the system begins in state 1 , such that $\vec{\psi}(0)=\hat{e}_{1}$. At time $t>0$, the system evolves according to the Schrödinger equation

$$
\begin{equation*}
\frac{\partial \vec{\psi}}{\partial t}=-i H \vec{\psi} \tag{4}
\end{equation*}
$$

where

$$
H=\left(\begin{array}{ll}
a & b \tag{5}\\
b & a
\end{array}\right)
$$

and a, b are constants with units of $1 /$ time. Solve Eq. (4) to determine $\vec{\psi}(t)$ using eigenvalue methods. (7 points)
(b) The quantities $P_{i}(t)=\left|\left\langle\hat{e}_{i}, \vec{\psi}(t)\right\rangle\right|^{2}$ represents the probability of finding the system in state i. Compute $P_{1}(t)$ and $P_{2}(t)$. (3 points)

[^0]
[^0]: ${ }^{1}$ An example of a two-state system is an electron at rest, in which the two states are spin-up and spin-down.

