PHYS 5180: Homework 1 (due Thurs Jan. 22)

1. The Levi-Civita tensor $\varepsilon^{\mu \nu \alpha \beta}$ is defined as being antisymmetric under permutation of any two indices (e.g., $\varepsilon^{\mu \nu \alpha \beta}=-\varepsilon^{\mu \alpha \nu \beta}$) and $\varepsilon^{0123}=+1$.

- What is ε_{0123} ?
- Show that $\varepsilon^{\mu \nu \alpha \beta}$ is invariant under Lorentz transformations. (You may consider only rotations and boosts about the \hat{z} axis using the explicit form for $\Lambda^{\mu}{ }_{\nu}$ given in class.)

2. Consider a four-dimensional spacetime integral $\int d^{4} x f(x)$. Show that the integration measure $d^{4} x$ is invariant under a Lorentz transformation $x^{\mu} \rightarrow x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu}$.
3. Peskin \& Schroeder (PS) problem 2.1.
4. PS problem 2.2.
