PHYS 5180: Homework 2 (due Friday 4pm Jan. 30)

1. Consider an N-particle state

$$
\begin{equation*}
\left|\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}\right\rangle=\left(\prod_{i=1}^{N} \sqrt{2 E_{i}} a_{\mathbf{p}_{i}}^{\dagger}\right)|0\rangle . \tag{1}
\end{equation*}
$$

Show that

$$
\begin{aligned}
H\left|\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}\right\rangle & =\left(\sum_{i=1}^{N} E_{i}\right)\left|\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}\right\rangle \\
\mathbf{P}\left|\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}\right\rangle & =\left(\sum_{i=1}^{N} \mathbf{p}_{i}\right)\left|\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}\right\rangle
\end{aligned}
$$

where H is the Hamiltonian and \mathbf{P} is the momentum operator.
2. A Lorentz transformation Λ can be represented by a transformation operator $U(\Lambda)$ acting on a state $|\mathbf{p}\rangle$ as follows:

$$
U(\Lambda)|\mathbf{p}\rangle=\left|\mathbf{p}^{\prime}\right\rangle=|\Lambda \mathbf{p}\rangle
$$

where $\mathbf{p}^{\prime}=\Lambda \mathbf{p}$ is shorthand for $p^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} p^{\nu}$. Show the following:

- $U(\Lambda)$ must be a unitary operator.
- The creation and annihilation operators transform as

$$
\begin{aligned}
a_{\mathbf{p}^{\prime}} & =U(\Lambda) a_{\mathbf{p}} U(\Lambda)^{\dagger} \sqrt{E_{\mathbf{p}} / E_{\mathbf{p}^{\prime}}} \\
a_{\mathbf{p}^{\prime}}^{\dagger} & =U(\Lambda) a_{\mathbf{p}}^{\dagger} U(\Lambda)^{\dagger} \sqrt{E_{\mathbf{p}} / E_{\mathbf{p}^{\prime}}}
\end{aligned}
$$

- $U(\Lambda) \phi(x) U(\Lambda)^{\dagger}=\phi(\Lambda x)$.

3. Consider the Lagrangian for a complex scalar field with a classical external source $j(x)$:

$$
\begin{equation*}
\mathscr{L}(x)=\left|\partial_{\mu} \phi(x)\right|^{2}-m^{2}|\phi(x)|^{2}+j(x) \phi(x)^{*}+j(x)^{*} \phi(x) . \tag{2}
\end{equation*}
$$

Suppose the source term is zero in the distant past, turns on for some finite amount of time, and then turns off again. Assuming we start in the vacuum state $|0\rangle$ before the source turns on, compute the total energy and charge, given by

$$
\langle 0| H|0\rangle, \quad\langle 0| Q|0\rangle,
$$

after the source has turned off. Hint: See PS pages 32-33 for the case of a real scalar field.

