PHYS 5180: Homework 4 (due Friday 4pm Feb. 20)

1. PS problem 4.2
2. PS problem 4.3
3. Consider two real scalars ϕ and Φ, with Lagrangian

$$
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{2}-\frac{1}{2} M^{2} \Phi^{2}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{\lambda}{3!} \Phi \phi^{3},
$$

where Φ has mass M and ϕ is massless. The goal of this problem is to do the three-body phase space integral for the decay $\Phi(k) \rightarrow \phi\left(p_{1}\right) \phi\left(p_{2}\right) \phi\left(p_{3}\right)$, assuming Φ decays at rest:

$$
I_{3}=\int \frac{d^{3} p_{1}}{(2 \pi)^{3} 2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}} \int \frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}}(2 \pi)^{4} \delta^{4}\left(k-p_{1}-p_{2}-p_{3}\right) .
$$

- First, do the $\int d^{3} p_{3}$ integral using $\delta^{3}\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}\right)$. Note that after doing this integral E_{3} is fixed to be $E_{3}=\left|\mathbf{p}_{1}+\mathbf{p}_{2}\right|$.
- Second, due to rotational invariance of I_{3}, you may perform three out of four angular integrals, such that

$$
\int d^{3} p_{1} \int d^{3} p_{2}=2(2 \pi)^{2} \int_{0}^{\infty} p_{1}^{2} d p_{1} \int_{0}^{\infty} p_{2}^{2} d p_{2} \int_{-1}^{+1} d \cos \theta
$$

where $\cos \theta$ is the angle between \mathbf{p}_{1} and \mathbf{p}_{2}.

- Third, rewrite I_{3} by performing a change of integration variables as follows:

$$
\int d p_{1} \int d p_{2} \int d \cos \theta \longrightarrow \int d E_{1} \int d E_{2} \int d E_{3}
$$

What is the range of integration on E_{3} ? Use the remaining δ-function to perform the integral over E_{3}. After performing this integral, show that the allowed range of integration for $\int d E_{1} \int d E_{2}$ is

$$
\begin{equation*}
0<E_{1}<\frac{M}{2}, \quad \frac{M}{2}-E_{1}<E_{2}<\frac{M^{2}-2 M E_{1}}{2 M-4 E_{1}} \tag{1}
\end{equation*}
$$

(Hint: Look at where the δ-function has support.)

- Fourth, assuming the matrix element is constant, evaluate the remaining $\int d E_{1} \int d E_{2}$ integrals to show

$$
\begin{equation*}
I_{3}=\frac{M^{2}}{64 \pi^{3}} \tag{2}
\end{equation*}
$$

- Lastly, use your result to evaluate $\Gamma(\Phi \rightarrow \phi \phi \phi)$. (Hint: Don't forget a factor of $1 / 3$! from identical final state particles.)

