PHYS 5180: Homework 4 (due Friday 4pm Feb. 20)

- 1. PS problem 4.2
- 2. PS problem 4.3
- 3. Consider two real scalars ϕ and Φ , with Lagrangian

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu} \Phi)^2 - \frac{1}{2} M^2 \Phi^2 + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{\lambda}{3!} \Phi \phi^3,$$

where Φ has mass M and ϕ is massless. The goal of this problem is to do the three-body phase space integral for the decay $\Phi(k) \to \phi(p_1)\phi(p_2)\phi(p_3)$, assuming Φ decays at rest:

$$I_3 = \int \frac{d^3 p_1}{(2\pi)^3 2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \int \frac{d^3 p_3}{(2\pi)^3 2E_3} (2\pi)^4 \delta^4 (k - p_1 - p_2 - p_3)$$

- First, do the $\int d^3 p_3$ integral using $\delta^3(\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3)$. Note that after doing this integral E_3 is fixed to be $E_3 = |\mathbf{p}_1 + \mathbf{p}_2|$.
- Second, due to rotational invariance of I_3 , you may perform three out of four angular integrals, such that

$$\int d^3 p_1 \int d^3 p_2 = 2(2\pi)^2 \int_0^\infty p_1^2 dp_1 \int_0^\infty p_2^2 dp_2 \int_{-1}^{+1} d\cos\theta$$

where $\cos \theta$ is the angle between \mathbf{p}_1 and \mathbf{p}_2 .

• Third, rewrite I_3 by performing a change of integration variables as follows:

$$\int dp_1 \int dp_2 \int d\cos\theta \longrightarrow \int dE_1 \int dE_2 \int dE_3.$$

What is the range of integration on E_3 ? Use the remaining δ -function to perform the integral over E_3 . After performing this integral, show that the allowed range of integration for $\int dE_1 \int dE_2$ is

$$0 < E_1 < \frac{M}{2}, \quad \frac{M}{2} - E_1 < E_2 < \frac{M^2 - 2ME_1}{2M - 4E_1}.$$
 (1)

(*Hint*: Look at where the δ -function has support.)

• Fourth, assuming the matrix element is constant, evaluate the remaining $\int dE_1 \int dE_2$ integrals to show

$$I_3 = \frac{M^2}{64\pi^3}$$
(2)

• Lastly, use your result to evaluate $\Gamma(\Phi \to \phi \phi \phi)$. (*Hint*: Don't forget a factor of 1/3! from identical final state particles.)