PHYS 5180: Homework 5 (due Friday 4pm Mar. 6)

1. PS problem 3.2

2. PS problem 3.4 (a-c)
3. The neutrino ν is a spin- $\frac{1}{2}$ particle with a very tiny but nonzero mass $\left(m_{\nu} \lesssim 1 \mathrm{eV}\right) .{ }^{1}$ Since only the lefthanded neutrino field ν_{L} has been observed experimentally, it is unknown whether the neutrino is described by a Majorana field ν_{L} or a Dirac field $\nu=\binom{\nu_{L}}{\nu_{R}}$. If ν is a Dirac field, it is a mystery why the neutrino should have a Dirac mass that is so much smaller than the other Dirac fermions in the Standard Model.

One model to describe the neutrino mass is called the see-saw model. Let $N=i \sigma^{2} \nu_{R}^{*}$ be the left-handed spinor corresponding to ν_{R}. Consider the Lagrangian

$$
\begin{equation*}
\mathscr{L}=\bar{\nu}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \nu+\frac{i M}{2}\left(N^{T} \sigma^{2} N-N^{\dagger} \sigma^{2} N^{*}\right), \tag{1}
\end{equation*}
$$

where m is a Dirac mass for $\nu_{L, R}$ and M is a Majorana mass for ν_{R}.
Working in the limit $M \gg m$, show that through a field redefinition

$$
\begin{equation*}
\nu_{L} \rightarrow i \nu_{1}+\frac{m}{M} \nu_{2}, \quad N \rightarrow \nu_{2}-\frac{i m}{M} \nu_{1} \tag{2}
\end{equation*}
$$

the Lagrangian (1) is diagonalized as two uncoupled Majorana fermions ν_{1} and ν_{2}, at linear order in $1 / M$. Compute the Majorana masses for ν_{1} and ν_{2} in terms of m, M.

Assuming ν_{1} is the physical neutrino state that has been observed experimentally, compute the value of M needed to have $m_{1}=1 \mathrm{eV}$ if

- $m=m_{e}$ (the electron mass)
- $m=m_{t}$ (the top quark mass)

In this way, the see-saw "explains" the smallness of the neutrino mass by having a big Majorana mass for the unobserved right-handed state ν_{R}.
4. Consider the following interactions between a Dirac fermion ψ and a photon A^{μ} :

- $\bar{\psi} \gamma^{\mu} \psi A_{\mu}$ (coupling of a photon to fermion electric charge)

[^0]- $\bar{\psi} \sigma^{\mu \nu} \psi F_{\mu \nu}$ (coupling of a photon to the fermion magnetic dipole)
- $\epsilon_{\mu \nu \alpha \beta} \bar{\psi} \sigma^{\mu \nu} \psi F^{\alpha \beta}$ (coupling of a photon to the fermion electric dipole)

Determine whether these interactions are even or odd under the following: $C, P, T, C P, C P T$. Assume that the photon field A^{μ} transforms as a Lorentz four-vector under P, T and is odd under C.
5. PS problem 3.7.

[^0]: ${ }^{1}$ In reality there are three flavors of neutrinos ν_{L}. For simplicity, we are only considing a single flavor, but this discussion generalize to multiple flavors.

