
PHYS 5180: Homework 7 (due Friday 4pm Apr. 3)

1. PS problem 6.1.

2. This problem will illustrate the Higgs mechanism in a simpler context.

• Consider the Lagrangian for a vector field Aµ with a mass term:

L = − 1
4FµνF

µν +m2
AAµA

µ .

Show that the equation of motion (in Lorentz gauge) is (∂2 +m2
A)Aµ = 0. Show, however, that L is

not gauge invariant unless mA = 0.

• The point of the Higgs mechanism is to generate mA 6= 0 from a gauge-invariant theory. Consider the
Lagrangian for a massless vector field Aµ and a complex scalar φ with charge qφe:

L = |Dµφ|2 − V (φ)− 1
4FµνF

µν ,

where the covariant derivative is Dµ = ∂µ − iqφeAµ, and the potential is

V (φ) = −µ
2

2
φ†φ+

λ

4
(φ†φ)2

where µ2, λ > 0. Show that L is invariant under local (gauge) transformations

φ(x)→ e−iqφα(x)φ(x) , Aµ(x)→ Aµ(x)− 1

e
∂µα(x) .

Show that the potential V (φ) is minimized for |φ| = v/
√

2 6= 0 and determine v in terms of µ2 and λ.1

• Since the vacuum corresponds to the minimum energy state, we must expand the theory about the
point |φ| = v/

√
2. Write

φ =
(v + h(x)√

2

)
eiη(x)/v (1)

where h(x) and η(x) are two real scalar fields, corresponding to fluctuations about the vacuum. Express
L in terms of these fields, and evaluate the masses of h and η. Next, show that η may be removed
from the theory by performing a gauge transformation, and that L now describes the theory of a
massive vector boson Aµ and one real scalar field h.2 Determine mA.

1v is known as the “vacuum expectation value” (vev) since 〈φ〉 = v.
2In the original theory, the complex scalar φ and massless vector Aµ each correspond to two degrees of freedom. In the new

theory, the massive Aµ has three degrees of freedom (two transverse + one longitudinal polarization) and the real scalar has
one degree of freedom. We say that Aµ has eaten the massless field η to acquire its mass.



• Evaluate the partial decay rate for h→ AA in terms of mh,mA, and v. Note: it is necessary to use a
modified polarization sum rule for a massive vector boson, which has three physical polarizations:∑

pol

εµ(k)ε∗ν(k)→ −
(
gµν −

kµkν
m2
A

)
.

This rule can be verified in the A rest frame using the explicit polarization vectors ε = (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), while the unphysical time-like polarization ε = (1, 0, 0, 0) does not contribute.

• Next, we consider fermions. Suppose that the gauge interaction is chiral, meaning that left- and
right-handed chiral fields transform differently:

ψL(x)→ e−iqLα(x)ψL(x) , ψR(x)→ e−iqRα(x)ψR(x) ,

where qL,R are the chiral charges. Show that the standard Dirac mass term

mψ̄ψ

is forbidden by the gauge symmetry, but a Yukawa interaction is allowed

Lint = −gψψ̄RψLφ+ h.c. , (2)

assuming qφ + qL = qR, where gψ is a real, positive coupling constant. Show that by making the
substition in Eq. (1), the Yukawa interaction (2) generates a mass term for ψ.

• Determine the Feynman rules for the hf̄f and Af̄f vertices and compute the decay rates Γ(h → ff̄)
and Γ(A→ ff̄), assuming these decays are kinematically allowed, in terms of mf ,mA,mh, and v.

This problem is very similar to the actual Standard Model (which has a more complicated gauge symmetry),
with A being a proxy for the W,Z bosons. This shows how the Higgs field generates masses for gauge bosons
and fermions, which are otherwise forbidden by gauge symmetry.

3. One hypothesis for dark matter is that it may interact through the Higgs boson. In this case, dark matter
passing through the Earth may be observable by scattering with nuclei in detectors (known as direct
detection experiments).

Consider the following interaction (valid at low energy)

Lint = −gnn̄nh− gχχ̄χh (3)

where n is a Dirac fermion for the nucleon (proton or neutron), χ is a Dirac fermion for dark matter, and
h is the Higgs boson (a real scalar). The nucleon-Higgs coupling is known to be gn ≈ 10−3, but the dark
matter mass mχ and coupling gχ are unknown.

• Show that the unpolarized cross section (known as the spin-independent cross section) for χn→ χn
in the nonrelativisitic limit is

σ(nχ→ nχ) =
g2χg

2
nµ

2
nχ

πm4
h

, (4)

where µnχ is the dark matter-nucleon reduced mass.
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• Next, we will consider the scattering cross section for Nχ→ Nχ, where N is a nucleus with A nucleons.
Assuming all particles are nonrelativistic and the initial N is at rest, show that the momentum transfer
is |q| < 2µNχvdm, where vdm ∼ 10−3 c is the initial dark matter velocity. For mχ ∼ 100 GeV and
A ∼ 100, argue that the de Broglie wavelength λ = 2π/|q| is comparable to the size of the nucleus.
This implies that dark matter scatters coherently from the entire nucleus, not individual nucleons.
Therefore, compute σ(Nχ→ Nχ) by replacing

gn → gN = Agn, µnχ → µNχ . (5)

in your result above.

• For mχ = 100 GeV, compute the expected number of dark matter-nucleus collisions as a function of gχ
given the following information: the mass density of dark matter particles passing through the Earth
is around ρdm ≈ 0.3 GeV/cm3, the detector is 100 kg with A = 100,3 and the experiment will operate
for 100 days. Assuming no background and no signal events (i.e. less than 1 event) were observed,
what is approximate limit on gχ?

• For lighter mass dark matter, direct detection experiments have reduced sensitivity due to dark matter-
nuclear scattering imparting too little energy to be detected. However, Higgs bosons produced at the
Large Hadron Collider can study this case (provided mχ < mh/2). Compute the partial width for
Γ(h→ χχ̄), known as the invisible Higgs width since χχ̄ are unobserved in the collider experiment.
Given the current (approximate) experimental constraint

Γ(h→ invisible states) . 2 MeV , (6)

determine the constraint on gχ assuming mχ � mh.

3Typically materials are xenon, argon, or germanium.
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