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1. Groups in Particle Physics

When neutrons were discovered, a few fun facts were noticed:

• Protons and neutrons almost had the same mass, and they behaved almost the same1. And
thus we call them nucleons.

• In particular, the strong interaction between nucleons, either it is between two protons, two
neutrons, or a proton and a neutron, is always the same.

By then, we had no powerful accelerators to see the substructure of the nucleons and we believed
them as fundamental and the strong interactions were transmitted by pions. There are three different
pions: π+, π−, and π0. By the knowledge of the fun facts, it is reasonable to assume that the action
for these particles should be invariant under a global SU(2) symmetry, historically known as the
isospin symmetry.

a) By dimensions of the representations of SU(2), which representation are the nucleons and pions
in respectively?

The n fields transform as an n× n dimensional representation L if[
T i,Φa(x)

]
= −(LiΦ(x))a.

b) Using dimensional analysis, write down all the possible relevant terms that could exist in the
Lagrangian that respect the SU(2) symmetry.

c) Show that each term you write down is indeed SU(2) invariant by checking[
T i, your term here

]
= 0

using the representations for fundamentals and adjoints in SU(2)2,

Lif =
τ i

2
, Liadj,jk = −iεijk

1Except proton has a positive electric charge while the neutron is neutral.
2Only the interaction term will actually use the specific representation.
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d) Yukawa’s Theory of Mesons: In the Yukawa model of nucleons and pions the SU(2)
(isospin) invariant Lagrangian density is

L0 = ψ̄
(
i 6∂ −mI + igπγ

5~π · ~τ
)
ψ +

1

2

[
(∂µ~π)2 − µ2~π 2

]
− λ

(
~π 2
)2
,

where

ψ =

(
ψp
ψn

)
, π =

 π1
π2
π3

 , π± =
π1 ∓ iπ2√

2
, π0 = π3.

Note that the field ψ has two kinds of indices – the usual spinor index as well as an SU(2) index.
The nucleon and pion fields transform under the fundamental and adjoint representations,
respectively.

Show that the vertices for p̄pπ0, n̄nπ0, n̄pπ−, and p̄nπ+ (given by the relevant coefficients in
iL0) are related and given by −gπγ5,+gπγ5,−

√
2gπγ

5,−
√

2gπγ
5, respectively.

Solution:

a) Since there are two types of nucleons and three types of pions. The nucleons will be in the
fundamental representation and the pions will be in the adjoint representation.

b) The nucleons are fermions, so the dimension is 3
2 . The pions are bosons, so the dimension is

1. The renormalizable terms will can write down will involve the kinetic and mass term of the
nucleons and the pions, the self-interaction of the pions,

ψ̄ 6∂ψ,mψ̄ψ, (∂µ~π)2 , µ2~π 2, λ
(
~π 2
)2
,

and there is only one term that involves both nucleons and pions and is renormalizable,

ψ̄(~π · ~τ)ψ

c) As Dirac matrices do not affect the SU(2) symmetry, we only need to show

[T i, ψ†ψ] = 0

By definition, we have
[T i, ψa] = −(Liψ)a

Take the adjoint, we have

[T i, ψa]
† = −(ψ†Li)a = [ψ†a, T

i] = −[T i, ψ†a]

thus we have
[T i, ψ†a] = (ψ†Li)a

Now use the following relationship regarding commutators,

[A,BC] = [A,B]C +B[A,C]
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we have
[T i, ψ†aψa] = (ψ†Li)aψa + ψ†a(−(Liψ)a) = 0

The above proof does not depend on which representation the field lives in, so it would work
for ~π 2 too. The only other thing we need to handle is,

ψ†(~π · ~τ)ψ

We need to use
[A,BCD] = [A,B]CD +B[A,C]D +BC[A,D]

we have

[T i, ψ†(~π · ~τ)ψ] = (ψ†Li)(~π · ~τ)ψ + ψ†(−Liπ~π) · ~τψ + ψ†(~π · ~τ)(−(Liψ)) (1)

= (ψ†Li)(~π · ~τ)ψ + ψ†[(~π · ~τ), Li]ψ + ψ†(~π · ~τ)(−(Liψ)) = 0 (2)

where we used
(−Liπ~π) · ~τ = [(~π · ~τ), Li]

This can be proved using the specific representation of the fields,

(−Liπ~π) · ~τ = −Liπ,kjπjτk = iεikjπ
jτk

[(~π · ~τ), Li] =

[
πjτ j ,

τ i

2

]
(3)

= πjiεjikτ
k (4)

= iεikjπ
jτk (5)

= (−Liπ~π) · ~τ (6)

d) First we need to expand the gπ term in the Lagrangian density:

ψ̄igπγ
5~π · ~τψ = igπ

(
ψ̄p ψ̄n

)
γ5
(

π3 π1 − iπ2
π1 + iπ2 −π3

)(
ψp
ψn

)
= igπ

(
ψ̄p ψ̄n

)
γ5
(

π0
√

2π+√
2π− −π0

)(
ψp
ψn

)
= igπ

(
ψ̄p ψ̄n

)
γ5
(
π0ψp +

√
2π+ψn√

2π−ψp − π0ψn

)
= igπ

(
ψ̄pγ

5π0ψp +
√

2ψ̄pγ
5π+ψn +

√
2ψ̄nγ

5π−ψp − ψ̄nγ5π0ψn
)

From the last line we can read off the Feynman rules, and see that the vertices for p̄pπ0, n̄nπ0, n̄pπ−,
and p̄nπ+ are given respectively by −gπγ5,+gπγ5,−

√
2gπγ

5,−
√

2gπγ
5.
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2. Quark Scattering

Quarks are fermions that live in the fundamental representation of SU(3). Quarks come in six flavors
(up, down, charm, strange, top, and bottom), and are constituents of hadrons such as protons and
neutrons. Strong (aka QCD or SU(3)) interactions conserve flavor. Due to confinement, the initial
and final states of any scattering experiment only contains bound states of quarks instead of isolated
quarks. Let us oversimplify our world by considering scattering of the quarks instead of hadrons.
We will also ignore electroweak interactions to further simplify things.

Consider the process qri q̄
r
j → qskq̄

s
l (assuming they carry momentum pµ1 , p

µ
2 , p

µ
3 , p

µ
4 respectively), where

r, s are flavor indices and i, j, k, l are color indices.

a) Write down the Lagrangian and determine the Feynman rule(s) for the quark-gluon vertex or
vertices.

b) Draw the Feynman diagram(s) that contribute to this process at leading order. Note that
depending on the final states, there are two different scenarios.

c) Before we dive in and start calculating the amplitude, can you think of any Feynman diagram(s)
in QED that look similar to the ones you just drew? Draw the corresponding QED diagrams.

d) For each corresponding scenario in QED, write down the amplitude of the diagram according
to the Feynman rules.

e) For each of the two quark scattering scenarios, write down the amplitude of the diagram
according to the Feynman rules.

f) Compare each scenario of quark scattering and its QED pair and comment on your observation.

g) For each scenario of the quark scattering, write down the amplitude squared, averaged over ini-
tial colors and spins and summed over final colors and spins. Perform the color sums only. Hint:
T aT bT a = −1

6T
b, Tr[T aT b] = 1

2δ
ab where T a are the generators of SU(3) in the fundamental

representation.

h) Consult the appendix to determine the amplitude squared, averaged over initial colors and
spins and summed over final colors and spins, for both scenarios.

i) Optional: If you completed the optional problem 2 of QFT I Tutorial 4, you know that the
quantum field theory amplitude iM for two particles to scatter from momentum states ±p to
momentum states ±p′ in the non-relativistic limit is related to the classical potential V (r) by:

M = −(2m)2
∫
d3rV (r)e−i(p−p

′)·r (7)

wherem is the mass of the particles. By considering the nonrelativistic limit of electron-positron
scattering, derive the Coulomb potential V (r) = −α

r from QED.

j) Apart from group theoretic factors, the same calculation gives the QCD potential at short
distances where perturbation theory works. Assuming the results of the previous part, show
that the perturbative term in the QCD potential is VQCD = −4

3
αs
r .
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k) Which diagrams contribute to qri q̄
r
j → qskq̄

s
l at one loop? Which are UV-divergent? Which are

IR-divergent?

Solution:

a) The Lagrangian is just six fermions that live in the fundamental representation

L = −1

4
FµνFµν + ψ̄r

(
i /D −m

)
ψr (8)

since there is no flavor mixing in QCD. The vertex is rule is −gγµδrsT aij .

b) If the quarks in the final state have the same flavor as the quarks in the initial state (Scenario
II), the Feynman diagram is given as follows, note the minus sign coming from the fact that

δik

qβ(p1)

qγ(p3)

q̄α(p2)

q̄δ(p4)

Li

Lk

δik

qβ(p1)

qγ(p3)

q̄α(p2)

q̄δ(p4)

Lk− Li

– Typeset by FoilTEX – 1

fermion fields are anti-commuting. If the quarks in the final state are in different flavor from
the quarks in the initial state (Scenario I), the Feynman diagram will only consist the first
diagram, as QCD cannot change flavor.

c) The Feynman diagram of the corresponding QED process is the process of Bhabha scattering
(e−e+ → e−e+) if the initial states and the final states are the same flavor. For the other
scenario, the corresponding QED process is (e−e+ → µ−µ+). We can obtain the diagrams by
replacing the gluon lines with photon lines, the quark lines with lepton lines. Of course we
have no color indices any more.

d) Scenario I (QED version)

iMfi =
ie2

s
(ū3γµv4 v̄2γ

µu1) . (9)

Scenario II (QED version)

iMfi = ie2
(
ū3γµv4 v̄2γ

µu1
s

− ū3γµu1 v̄2γ
µv4

t

)
. (10)

e) Scenario I

iMfi = (igs ū3γµT
a
klv4)

(
−igµρδab

s

)
(igs v̄2γρT

b
jiu1) (11)

=
ig2s
s
T ajiT

a
kl (ū3γµv4 v̄2γ

µu1)
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Scenario II

iMfi = (igs ū3γµT
a
klv4)

(
−igµρδab

s

)
(igs v̄2γρT

b
jiu1) (12)

− (igs ū3γµT
a
kiu1)

(
−igµρδab

t

)
(igs v̄2γρT

b
jlv4)

= ig2s

(
T ajiT

a
kl

ū3γµv4 v̄2γ
µu1

s
− T akiT ajl

ū3γµu1 v̄2γ
µv4

t

)
.

f) By comparing the amplitudes, the only difference between the QCD version and the QED
version is that QED version has no color factors and the coupling constant is e instead of gs.

g) Scenario I. The amplitude squared is given by

1

36

∑
colors, spins

|Mfi|2 =
1

36
T aklT

a
jiT
∗b
kl T

∗b
ji

∑
spins

| (ū3γµv4 v̄2γµu1) |2 (13)

=
1

36
Tr[T aT b]Tr[T aT b]

∑
spins

| (ū3γµv4 v̄2γµu1) |2

=
1

36

1

2
δab

1

2
δab
∑
spins

| (ū3γµv4 v̄2γµu1) |2

=
2

9

g4s
s2

1

4

∑
spins

| (ū3γµv4 v̄2γµu1) |2

Scenairo II. The amplitude squared is given by three terms. The non cross terms will have the
same color factor, but the cross term will have the following color factor(

1

3

)2

T ajiT
a
klT
∗b
ki T

∗b
jl = −1

6

(
1

3

)2

T bjlT
∗b
jl (14)

= −1

6

(
1

3

)2

Tr(T bT b)

= − 2

27

h) Now we can just insert the color factors to the QED results to get the spin and color averaged
amplitude-squared

Scenario I

1

36

∑
colors, spins

|Mfi|2 =
4

9
g4s

(
t2 + u2

s2

)
(15)

Scenario II

1

36

∑
colors, spins

|Mfi|2 =
4

9
g4s

[
t2 + u2

s2
+
s2 + u2

t2
− 2

3

u2

st

]
(16)
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i) See Peskin and Schroeder page 125.

j) The difference between the QED and QCD case is that in the QCD case we should replace the
factor of e2 with

e2 → 1

3
g2s
∑
a

T ajiT
a
ij (17)

= g2s
1

3

∑
a

1

2
δaa

=
4

3
g2s

The factor of 1
3 comes from color averaging. The indices on the generators have to be the same

for a color-neutral state.

k) If the dotted line indicates the ghost, then the s-channel diagrams are:
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If the quarks in the initial and final state are identical, then there is also a t-channel diagram
for each of the above diagrams. The above diagrams are all naively both UV- and IR-divergent.

There are also the following diagrams:

plus additional similar diagrams if the quarks are identical. These diagrams are UV-finite, but
IR-divergent.

A. Some Known Spin-Averaged Amplitudes-Squared

You may find the following QED results that you calculated in QFT I useful.

a) The process of (e−e+ → µ−µ+)

1

4

∑
|M̄fi|2 = 2e4

(t2 + u2)

s2
.

b) The process of (e−e+ → e−e+)

1

4

∑
|M̄fi|2Bhabha = 2e4

[
t2 + u2

s2
+
s2 + u2

t2
+

2u2

st

]
Recall that the Mandelstam variables are defined by

s ≡ (p1 + p2)
2 = (p3 + p4)

2

t ≡ (p1 − p3)2 = (p2 − p4)2

u ≡ (p1 − p4)2 = (p2 − p3)2
(18)
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