Higgs

7 January 2016

1 The Georgi-Glashow SU(2) Model

The Georgi-Glashow model was proposed as a theory of the weak interactions in 1972. It doesn't quite work, as you will see, but many key features of the electroweak theory are present. The Lagrangian for the Georgi-Glashow model is:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{GG}}=-\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)+\operatorname{Tr}\left[\left(D_{\mu} \phi\right)\left(D^{\mu} \phi\right)\right]+\mu^{2} \operatorname{Tr} \phi^{2}-\lambda\left(\operatorname{Tr} \phi^{2}\right)^{2} \tag{1}
\end{equation*}
$$

The gauge group is $S U(2)$, and the scalar field $\phi=\phi^{i} T^{i}$ is a triplet (i.e. adjoint) whose components ϕ^{i} are real and

$$
\begin{equation*}
T^{a}=\frac{1}{2} \sigma^{a} \tag{2}
\end{equation*}
$$

a) What values of ϕ minimize the potential?
b) By $S U(2)$ symmetry you can choose the vacuum to be $\left\langle\phi^{1}\right\rangle=\left\langle\phi^{2}\right\rangle=0,\left\langle\phi^{3}\right\rangle=v$.

Show that this choice of vacuum "breaks" two of the generators of $S U(2)$

$$
\begin{equation*}
e^{i \alpha_{1,2} T^{1,2}}\langle\phi\rangle e^{-i \alpha_{1,2} T^{1,2}} \neq\langle\phi\rangle \tag{3}
\end{equation*}
$$

and leaves one generator unbroken

$$
\begin{equation*}
e^{i \alpha_{3} T^{3}}\langle\phi\rangle e^{-i \alpha_{3} T^{3}}=\langle\phi\rangle \tag{4}
\end{equation*}
$$

by using the infinitesimal versions of equations (3) and (4).
c) Show that you can make a gauge choice (known as unitary gauge) so that $\phi^{1}=\phi^{2}=0$, $\phi^{3}=v+h$.
d) In unitary gauge, show that two of the three gauge bosons get a mass $M_{A}^{2}=g^{2} v^{2}$, and that one of the gauge bosons remains massless.

The Georgi-Glashow model can accommodate the massive $W^{ \pm}$bosons as well as the photon, but it has no Z boson. The Z boson is necessary to explain weak neutral current interactions, which were first observed in elastic electron-neutrino scattering.

Solution:

a)

$$
\operatorname{Tr} \phi^{2}=\phi^{i} \phi^{j} \operatorname{Tr}\left[T^{i} T^{j}\right]=\frac{1}{2} \sum\left(\phi^{i}\right)^{2} \equiv \frac{1}{2}\left(\phi^{i} \phi_{i}\right)
$$

Then the potential is

$$
V(\phi)=-\frac{1}{2} \mu^{2}\left(\phi^{i} \phi_{i}\right)+\frac{1}{4} \lambda\left(\phi^{i} \phi_{i}\right)^{2}
$$

The derivative is

$$
V^{\prime}(\phi)_{i}=-\mu^{2} \phi^{i}+\lambda\left(\phi^{j} \phi_{j}\right) \phi^{i}=0
$$

The solution to the above equation is

$$
\phi^{i} \phi_{i}=\frac{\mu^{2}}{\lambda} \equiv v^{2}
$$

b) The infinitesimal version is, not summing over the index

$$
e^{i \alpha_{i} T^{i}}\langle\phi\rangle e^{-i \alpha_{i} T^{i}}=\left(1+i \alpha_{i} T^{i}\right)\langle\phi\rangle\left(1-i \alpha_{i} T^{i}\right)=\langle\phi\rangle+i \alpha_{i}\left[T^{i},\langle\phi\rangle\right]
$$

Thus we need to prove that

$$
\left[T^{3},\langle\phi\rangle\right]=0, \quad\left[T^{1,2},\langle\phi\rangle\right] \neq 0
$$

This is obvious because with the specific choice of vacuum, we have

$$
\langle\phi\rangle=v T^{3}
$$

c) We can parametrize the field as

$$
\phi=e^{i\left(\frac{\xi_{1}}{v} T^{1}\right)+i\left(\frac{\xi_{2}}{v} T^{2}\right)}(v+h) T^{3} e^{-i\left(\frac{\xi_{1}}{v} T^{1}\right)-i\left(\frac{\xi_{2}}{v} T^{2}\right)}
$$

Infinitesimally, this is the same as the original parametrization.
And we can perform gauge transformation so that

$$
\phi=(v+h) T^{3}
$$

d) In unitary gauge, we look at the kinetic term of ϕ, for covariant derivative we have

$$
\begin{align*}
D_{\mu} \phi & =\partial_{\mu}(v+h) T^{3}+i g A_{\mu}^{i}(v+h)\left[T^{i}, T^{3}\right] \tag{5}\\
& =\partial_{\mu}(v+h) T^{3}+g A_{\mu}^{1}(v+h) T^{2}-g A_{\mu}^{2}(v+h) T^{1} \tag{6}
\end{align*}
$$

The term in the kinetic term

$$
\operatorname{Tr}\left[\left(D_{\mu} \phi\right)\left(D^{\mu} \phi\right)\right]
$$

that contributes to the gauge boson mass is

$$
\begin{equation*}
\operatorname{Tr}\left[\left(g A_{\mu}^{1}(v) T^{2}-g A_{\mu}^{2}(v) T^{1}\right)\left(g A^{\mu, 1}(v) T^{2}-g A^{\mu, 2}(v) T^{1}\right)\right]=\frac{1}{2} g^{2} v^{2}\left(\left(A_{\mu}^{1}\right)^{2}+\left(A_{\mu}^{2}\right)^{2}\right) \tag{7}
\end{equation*}
$$

where we used that

$$
\operatorname{Tr}\left[\left(T^{1,2}\right)^{2}\right]=\frac{1}{2}, T_{1} T_{2}+T_{2} T_{1}=0
$$

This shows that A_{1} and A_{2} have masses $m_{A}^{2}=g^{2} v^{2}$, while the third gauge boson remains massless.

2 *The Higgs Sector*

This problem is essential for this course. The Lagrangian for the Higgs sector in the Standard Model is given by

$$
\mathcal{L}_{\mathrm{Higgs}}=\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)-V(H)
$$

where H is an $S U(2)_{L}$ doublet of scalar fields and

$$
V(H)=-\mu^{2} H^{\dagger} H+\lambda\left(H^{\dagger} H\right)^{2}
$$

is the $S U(2)_{L} \times U(1)_{Y}$ invariant potential.
Consider a constant value of H for which this potential is minimized. By $S U(2)$ symmetry we can always choose this value to be

$$
\begin{equation*}
\binom{0}{\frac{v}{\sqrt{2}}} \tag{8}
\end{equation*}
$$

where v is a constant. Recall that the $U(1)_{Y}$ charge of H is $\frac{1}{2}$.
a) Show that the generator of $S U(2)_{L} \times U(1)_{Y}$ that leaves the vacuum invariant is $T_{3}+Y$.

Next consider small fluctuations of the Higgs field around this vacuum in the unitary gauge

$$
H(x)=\binom{0}{\frac{v+h(x)}{\sqrt{2}}} .
$$

b) Show that the potential then takes on the form

$$
V(h)=\left(\lambda v^{2}\right) h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4} .
$$

c) Also show that the kinetic term for the Higgs boson in the Lagrangian becomes

$$
\begin{aligned}
\mathcal{L}_{\text {Kinetic }} & =\frac{1}{2}\left(\partial_{\mu} h\right)\left(\partial^{\mu} h\right)+\frac{1}{8}\left(g^{\prime} B_{\mu}-g X_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g X^{3 \mu}\right)(v+h)^{2} \\
& +\frac{1}{8}\left(g X_{\mu}^{1}-i g X_{\mu}^{2}\right)\left(g X^{1 \mu}+i g X^{2 \mu}\right)(v+h)^{2}
\end{aligned}
$$

which shows that some of the vector bosons gain mass terms.
d) If we perform a field redefinition, we want the kinetic terms for the vector bosons to remain canonical normalized. Show that correct mass-eigenstate for the neutral particle above is

$$
Z_{\mu}=\cos \theta_{W} X_{\mu}^{3}-\sin \theta_{W} B_{\mu}
$$

where

$$
\cos \theta_{W}=\frac{g}{\sqrt{\left(g^{\prime}\right)^{2}+g^{2}}}
$$

is the Weinberg angle.
e) Verify that under a gauge transformation involving $U(1)_{E M}\left(U(1)_{E M}\right.$ is the unbroken subgroup of $\left.S U(2)_{L} \times U(1)_{Y}\right), X_{\mu}^{1}$ and X_{μ}^{2} transform into each other, and thus

$$
W^{ \pm \mu}=\frac{1}{\sqrt{2}}\left(X_{\mu}^{1} \mp i X_{\mu}^{2}\right)
$$

represent charged particles under $U(1)_{E M}$.
f) Verify that the masses of the three massive bosons are given by

$$
m_{W}^{2}=\frac{1}{4} g^{2} v^{2} \quad \text { and } \quad m_{Z}^{2}=\frac{1}{4} v^{2}\left(\left(g^{\prime}\right)^{2}+g^{2}\right)
$$

g) What is the expression for the vector field A_{μ} (given in terms of $g, g^{\prime}, X_{\mu}^{a}$ and B_{μ}) that remains massless? What is it called?
h) In general, the covariant derivative of field with $S U(2)_{L} \times U(1)_{Y}$ charge that is an $S U(2)$ doublet is given by

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}-i g X_{\mu}^{a} T^{a}-i g^{\prime} Y B_{\mu} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{a}=\frac{1}{2} \sigma^{a} \tag{10}
\end{equation*}
$$

Please rewrite this covariant derivative in terms of $W_{\mu}^{ \pm}, Z_{\mu}, A_{\mu}$ and obtain the following form:

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}-i \frac{g}{\sqrt{2}}\left(W_{\mu}^{+} T^{+}+W_{\mu}^{-} T^{-}\right)-i \frac{g}{\cos \theta_{W}} Z_{\mu}\left(T^{3}-Q \sin ^{2} \theta_{W}\right)-i e A_{\mu} Q \tag{11}
\end{equation*}
$$

where we also define

$$
\begin{equation*}
T^{ \pm} \equiv T^{1} \pm i T^{2} \tag{12}
\end{equation*}
$$

and

$$
Q \equiv T_{3}+Y, e \equiv \frac{g g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}
$$

Solution:

a)

$$
\begin{align*}
\left(T_{3}+Y\right)\binom{0}{\frac{v}{\sqrt{2}}} & =\left(\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\right)\binom{0}{\frac{v}{\sqrt{2}}} \tag{13}\\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{0}{\frac{v}{\sqrt{2}}} \\
& =0
\end{align*}
$$

This implies that any transformation generated by $T_{3}+Y$ leaves the vacuum in variant.
b) First we have

$$
\begin{equation*}
H^{\dagger} H=\frac{1}{2}(0, v+h)\binom{0}{v+h}=\frac{1}{2}(v+h)^{2} \tag{14}
\end{equation*}
$$

To find the constant v, we minimized the function $V(x)=-\mu^{2} x+\lambda x^{2}$ where $x \equiv H^{\dagger} H$. So we have $V^{\prime}(x)=-\mu^{2}+2 \lambda x=0$ at minimum. So $x=\frac{\mu^{2}}{2 \lambda}$, with our convention $x=\frac{v^{2}}{2}$. So we have $\mu^{2}=\lambda v^{2}$.

$$
\begin{align*}
V(h) & =-\mu^{2} \frac{1}{2}(v+h)^{2}+\lambda \frac{1}{4}(v+h)^{4} \tag{15}\\
& =-\frac{\lambda v^{2}}{2}(v+h)^{2}+\frac{\lambda}{4}(v+h)^{4} \\
& =-\frac{\lambda v^{2}}{2}\left(v^{2}+2 v h+h^{2}\right)+\frac{\lambda}{4}\left(v^{4}+4 v^{3} h+6 v^{2} h^{2}+4 v h^{3}+h^{4}\right) \\
& =\frac{\lambda}{4}\left(h^{4}+4 v h^{3}+4 v^{2} h^{2}-v^{4}\right)
\end{align*}
$$

c) The covariant derivative of Higgs is defined by

$$
\begin{align*}
D_{\mu} H & =\partial_{\mu} H-i g \frac{\sigma^{a}}{2} X_{\mu}^{a} H-i g^{\prime} \frac{1}{2} B_{\mu} H \tag{16}\\
& =\frac{1}{\sqrt{2}}\binom{0}{\partial_{\mu} h}-\frac{i}{2} \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
g X_{\mu}^{3}+g^{\prime} B_{\mu} & g X_{\mu}^{1}-i g X_{\mu}^{2} \\
g X_{\mu}^{1}+i g X_{\mu}^{2} & g^{\prime} B_{\mu}-g X_{\mu}^{3}
\end{array}\right)\binom{0}{v+h} \\
& =\frac{1}{\sqrt{2}}\binom{-\frac{i}{2}(v+h)\left(g X_{\mu}^{1}-i g X_{\mu}^{2}\right)}{\partial_{\mu} h-\frac{i}{2}(v+h)\left(g^{\prime} B_{\mu}-g X_{\mu}^{3}\right)}
\end{align*}
$$

The kinetic term is

$$
\begin{aligned}
\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right) & =\frac{1}{2}\left(\frac{i}{2}(v+h)\left(g X_{\mu}^{1}+i g X_{\mu}^{2}\right), \partial_{\mu} h+\frac{i}{2}(v+h)\left(g^{\prime} B_{\mu}-g X_{\mu}^{3}\right)\right)\binom{-\frac{i}{2}(v+h)\left(g X^{1 \mu}-i g X^{2 \mu}\right)}{\partial^{\mu} h-\frac{i}{2}(v+h)\left(g^{\prime} B^{\mu}-g X^{3 \mu}\right)} \\
& (17)
\end{aligned}
$$

d) Consider the "mass term"

$$
\frac{v^{2}}{8}\left(g^{\prime} B_{\mu}-g X_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g X^{3 \mu}\right)
$$

Then the mass matrix in $\left\{B, X^{3}\right\}$ basis

$$
M^{2}=\frac{v^{2}}{4}\left(\begin{array}{cc}
g^{\prime 2} & g g^{\prime} \\
g g^{\prime} & g^{2}
\end{array}\right)
$$

The eigenvalues are 0 and $\frac{v^{2}}{4}\left(g^{\prime 2}+g^{2}\right)$. The corresponding eigenvectors are

$$
\binom{\frac{g}{\sqrt{g^{2}+g^{\prime 2}}}}{-\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}} \text { and }\binom{\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}}{\frac{g}{\sqrt{g^{2}+g^{\prime 2}}}}
$$

The normalizations of these vectors are chosen so that the following matrix is orthogonal:

$$
O=\left(\begin{array}{cc}
\frac{g}{\sqrt{g^{2}+g^{\prime 2}}} & \frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}} \\
-\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}} & \frac{g}{\sqrt{g^{2}+g^{\prime 2}}}
\end{array}\right)
$$

When we apply this matrix O to the vector:

$$
\binom{B_{\mu}}{X_{\mu}^{3}}
$$

We obtain the two fields:

$$
\begin{aligned}
& A_{\mu}=\cos \theta_{W} B_{\mu}+\sin \theta_{W} X_{\mu}^{3} \\
& Z_{\mu}=-\sin \theta_{W} B_{\mu}+\cos \theta_{W} X_{\mu}^{3}
\end{aligned}
$$

e) As we have seen previously the generator that corresponds to the remaining symmetry is $T_{3}+Y=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Thus the unitary transformation is given by

$$
U=\left(\begin{array}{cc}
e^{i \theta(x)} & 0 \\
0 & 1
\end{array}\right)
$$

Apply this to the gauge field(where we suppress the Lorentz vector indices and also only consider the X^{1}, X^{2} terms, as the others donot mix with these two) we have

$$
\begin{align*}
\sum_{i=1}^{2} X_{\mu}^{i} \cdot \frac{\sigma^{i}}{2} & \rightarrow U \sum_{i=1}^{2} X_{\mu}^{i} \cdot \frac{\sigma^{i}}{2} U^{\dagger} \tag{18}\\
& =\left(\begin{array}{cc}
e^{i \theta(x)} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & X^{1}-i X^{2} \\
X^{1}+i X^{2} & 0
\end{array}\right)\left(\begin{array}{cc}
e^{-i \theta(x)} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \left(X^{1}-i X^{2}\right) e^{i \theta} \\
\left(X^{1}+i X^{2}\right) e^{-i \theta} & 0
\end{array}\right)
\end{align*}
$$

hence we can identify $W^{ \pm}=\frac{1}{\sqrt{2}}\left(X^{1} \mp i X^{2}\right)$ and we have $W^{ \pm} \rightarrow e^{ \pm i \theta} W^{ \pm}$under the $U(1)_{E M}$ transformation.
f) The mass terms are $\frac{1}{4} v^{2} g^{2} W_{\mu}^{-} W^{+\mu}+\frac{1}{8} v^{2}\left(g^{\prime 2}+g^{2}\right) Z^{\mu} Z_{\mu}$ with the new definition, and thus

$$
m_{W}^{2}=\frac{1}{4} g^{2} v^{2} \quad \text { and } \quad m_{Z}^{2}=\frac{1}{4} v^{2}\left(\left(g^{\prime}\right)^{2}+g^{2}\right)
$$

g) The other neutral particle is

$$
\begin{equation*}
A_{\mu}=\cos \theta_{W} B_{\mu}+\sin \theta_{W} X_{\mu}^{3} \tag{19}
\end{equation*}
$$

It is orthogonal to Z^{μ} and remains massless, this is our photon.
h) As

$$
\begin{equation*}
T^{ \pm}=\frac{1}{2}\left(\sigma^{1} \pm i \sigma^{2}\right) \tag{20}
\end{equation*}
$$

We have explicitly

$$
\begin{aligned}
& T^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& T^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

The covariant derivative of field with $S U(2) \times U(1)$ charge is given by

$$
\begin{align*}
D_{\mu} & =\partial_{\mu}-i g X_{\mu}^{a} \frac{\sigma^{a}}{2}-i g^{\prime} Y B_{\mu} \tag{21}\\
& =\partial_{\mu}-i \frac{g}{2}\left(\begin{array}{cc}
0 & X^{1}-i X^{2} \\
X^{1}+i X^{2} & 0
\end{array}\right)-i\left(g T^{3} X_{\mu}^{3}+g^{\prime} Y B_{\mu}\right)
\end{align*}
$$

As $W^{ \pm}=\frac{1}{\sqrt{2}}\left(X^{1} \mp i X^{2}\right)$, we immediately see that

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}-i \frac{g}{\sqrt{2}}\left(W_{\mu}^{+} T^{+}+W_{\mu}^{-} T^{-}\right)-i\left(g T^{3} X_{\mu}^{3}+g^{\prime} Y B_{\mu}\right) \tag{22}
\end{equation*}
$$

Invert the following relation

$$
\begin{aligned}
A_{\mu} & =\cos \theta_{W} B_{\mu}+\sin \theta_{W} X_{\mu}^{3} \\
Z_{\mu} & =-\sin \theta_{W} B_{\mu}+\cos \theta_{W} X_{\mu}^{3}
\end{aligned}
$$

we have

$$
\begin{align*}
X_{\mu}^{3} & =\cos \theta_{W} Z_{\mu}+\sin \theta_{W} A_{\mu} \tag{23}\\
B_{\mu} & =\cos \theta_{W} A_{\mu}-\sin \theta_{W} Z_{\mu} \tag{24}
\end{align*}
$$

So we have

$$
\begin{align*}
g T^{3} X_{\mu}^{3}+g^{\prime} Y B_{\mu} & =g T^{3}\left(\cos \theta_{W} Z_{\mu}+\sin \theta_{W} A_{\mu}\right)+g^{\prime} Y\left(\cos \theta_{W} A_{\mu}-\sin \theta_{W} Z_{\mu}\right) \tag{25}\\
& =Z_{\mu}\left(g T^{3} \cos \theta_{W}-g^{\prime} Y \sin \theta_{W}\right)+A_{\mu}\left(g T^{3} \sin \theta_{W}+g^{\prime} Y \cos \theta_{W}\right) \\
& =\frac{g}{\cos \theta_{W}} Z_{\mu}\left(T^{3} \cos ^{2} \theta_{W}-Y \sin ^{2} \theta_{W}\right)+e A_{\mu} Q \\
& =\frac{g}{\cos \theta_{W}} Z_{\mu}\left(T^{3}-Q \sin ^{2} \theta_{W}\right)+e A_{\mu} Q
\end{align*}
$$

So the covariant derivative is

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}-i \frac{g}{\sqrt{2}}\left(W_{\mu}^{+} T^{+}+W_{\mu}^{-} T^{-}\right)-i \frac{g}{\cos \theta_{W}} Z_{\mu}\left(T^{3}-Q \sin ^{2} \theta_{W}\right)-i e A_{\mu} Q \tag{26}
\end{equation*}
$$

