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1 The Georgi-Glashow SU(2) Model

The Georgi-Glashow model was proposed as a theory of the weak interactions in 1972. It doesn’t
quite work, as you will see, but many key features of the electroweak theory are present. The
Lagrangian for the Georgi-Glashow model is:

LGG = −1

2
Tr(FµνF

µν) + Tr [(Dµφ)(Dµφ)] + µ2Trφ2 − λ(Trφ2)2 (1)

The gauge group is SU(2), and the scalar field φ = φiT i is a triplet (i.e. adjoint) whose components
φi are real and

T a =
1

2
σa (2)

a) What values of φ minimize the potential?

b) By SU(2) symmetry you can choose the vacuum to be 〈φ1〉 = 〈φ2〉 = 0, 〈φ3〉 = v.

Show that this choice of vacuum “breaks” two of the generators of SU(2)

eiα1,2T 1,2〈φ〉e−iα1,2T 1,2 6= 〈φ〉 (3)

and leaves one generator unbroken

eiα3T 3〈φ〉e−iα3T 3
= 〈φ〉 (4)

by using the infinitesimal versions of equations (3) and (4).

c) Show that you can make a gauge choice (known as unitary gauge) so that φ1 = φ2 = 0,
φ3 = v + h.

d) In unitary gauge, show that two of the three gauge bosons get a mass M2
A = g2v2, and that

one of the gauge bosons remains massless.

The Georgi-Glashow model can accommodate the massive W± bosons as well as the photon, but it
has no Z boson. The Z boson is necessary to explain weak neutral current interactions, which were
first observed in elastic electron-neutrino scattering.

Solution:
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a)

Trφ2 = φiφjTr[T iT j ] =
1

2

∑
(φi)2 ≡ 1

2
(φiφi)

Then the potential is

V (φ) = −1

2
µ2(φiφi) +

1

4
λ(φiφi)

2

The derivative is
V ′(φ)i = −µ2φi + λ(φjφj)φ

i = 0

The solution to the above equation is

φiφi =
µ2

λ
≡ v2

b) The infinitesimal version is, not summing over the index

eiαiT
i〈φ〉e−iαiT i = (1 + iαiT

i)〈φ〉(1− iαiT i) = 〈φ〉+ iαi[T
i, 〈φ〉]

Thus we need to prove that
[T 3, 〈φ〉] = 0, [T 1,2, 〈φ〉] 6= 0

This is obvious because with the specific choice of vacuum, we have

〈φ〉 = vT 3

c) We can parametrize the field as

φ = e
i
(
ξ1
v
T 1

)
+i

(
ξ2
v
T 2

)
(v + h)T 3e

−i
(
ξ1
v
T 1

)
−i

(
ξ2
v
T 2

)
Infinitesimally, this is the same as the original parametrization.

And we can perform gauge transformation so that

φ = (v + h)T 3

d) In unitary gauge, we look at the kinetic term of φ, for covariant derivative we have

Dµφ = ∂µ(v + h)T 3 + igAiµ(v + h)[T i, T 3] (5)

= ∂µ(v + h)T 3 + gA1
µ(v + h)T 2 − gA2

µ(v + h)T 1 (6)

The term in the kinetic term
Tr [(Dµφ)(Dµφ)]

that contributes to the gauge boson mass is

Tr
[
(gA1

µ(v)T 2 − gA2
µ(v)T 1)(gAµ,1(v)T 2 − gAµ,2(v)T 1)

]
=

1

2
g2v2((A1

µ)2 + (A2
µ)2) (7)

where we used that

Tr[(T 1,2)2] =
1

2
, T1T2 + T2T1 = 0

This shows that A1 and A2 have masses m2
A = g2v2, while the third gauge boson remains

massless.
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2 *The Higgs Sector*

This problem is essential for this course. The Lagrangian for the Higgs sector in the Standard
Model is given by

LHiggs = (DµH)†(DµH)− V (H)

where H is an SU(2)L doublet of scalar fields and

V (H) = −µ2H†H + λ(H†H)2

is the SU(2)L × U(1)Y invariant potential.

Consider a constant value of H for which this potential is minimized. By SU(2) symmetry we can
always choose this value to be (

0
v√
2

)
(8)

where v is a constant. Recall that the U(1)Y charge of H is 1
2 .

a) Show that the generator of SU(2)L × U(1)Y that leaves the vacuum invariant is T3 + Y .

Next consider small fluctuations of the Higgs field around this vacuum in the unitary gauge

H(x) =

(
0

v+h(x)√
2

)
.

b) Show that the potential then takes on the form

V (h) = (λv2)h2 + λvh3 +
λ

4
h4.

c) Also show that the kinetic term for the Higgs boson in the Lagrangian becomes

LKinetic =
1

2
(∂µh)(∂µh) +

1

8

(
g′Bµ − gX3

µ

) (
g′Bµ − gX3µ

)
(v + h)2

+
1

8

(
gX1

µ − igX2
µ

) (
gX1µ + igX2µ

)
(v + h)2

which shows that some of the vector bosons gain mass terms.

d) If we perform a field redefinition, we want the kinetic terms for the vector bosons to remain
canonical normalized. Show that correct mass-eigenstate for the neutral particle above is

Zµ = cos θWX
3
µ − sin θWBµ

where

cos θW =
g√

(g′)2 + g2

is the Weinberg angle.
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e) Verify that under a gauge transformation involving U(1)EM (U(1)EM is the unbroken subgroup
of SU(2)L × U(1)Y ), X1

µ and X2
µ transform into each other, and thus

W±µ =
1√
2

(
X1
µ ∓ iX2

µ

)
represent charged particles under U(1)EM .

f) Verify that the masses of the three massive bosons are given by

m2
W =

1

4
g2v2 and m2

Z =
1

4
v2((g′)2 + g2)

g) What is the expression for the vector field Aµ (given in terms of g, g′, Xa
µ and Bµ) that remains

massless? What is it called?

h) In general, the covariant derivative of field with SU(2)L × U(1)Y charge that is an SU(2)
doublet is given by

Dµ = ∂µ − igXa
µT

a − ig′Y Bµ (9)

where

T a =
1

2
σa (10)

Please rewrite this covariant derivative in terms of W±µ , Zµ, Aµ and obtain the following form:

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i g

cos θW
Zµ(T 3 −Q sin2 θW )− ieAµQ (11)

where we also define

T± ≡ T 1 ± iT 2 (12)

and

Q ≡ T3 + Y, e ≡ gg′√
g2 + g′2

Solution:

a)

(T3 + Y )

(
0
v√
2

)
=

((
1
2 0
0 −1

2

)
+

(
1
2 0
0 1

2

))(
0
v√
2

)
(13)

=

(
1 0
0 0

)(
0
v√
2

)
= 0

This implies that any transformation generated by T3 + Y leaves the vacuum in variant.
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b) First we have

H†H =
1

2
(0, v + h)

(
0

v + h

)
=

1

2
(v + h)2 (14)

To find the constant v, we minimized the function V (x) = −µ2x + λx2 where x ≡ H†H. So

we have V ′(x) = −µ2 + 2λx = 0 at minimum. So x = µ2

2λ , with our convention x = v2

2 . So we
have µ2 = λv2.

V (h) = −µ2 1

2
(v + h)2 + λ

1

4
(v + h)4 (15)

= −λv
2

2
(v + h)2 +

λ

4
(v + h)4

= −λv
2

2
(v2 + 2vh+ h2) +

λ

4
(v4 + 4v3h+ 6v2h2 + 4vh3 + h4)

=
λ

4
(h4 + 4vh3 + 4v2h2 − v4)

c) The covariant derivative of Higgs is defined by

DµH = ∂µH − ig
σa

2
Xa
µH − ig′

1

2
BµH (16)

=
1√
2

(
0
∂µh

)
− i

2

1√
2

(
gX3

µ + g′Bµ gX1
µ − igX2

µ

gX1
µ + igX2

µ g′Bµ − gX3
µ

)(
0

v + h

)
=

1√
2

(
− i

2(v + h)(gX1
µ − igX2

µ)

∂µh− i
2(v + h)(g′Bµ − gX3

µ)

)
The kinetic term is

(DµH)†(DµH) =
1

2
(
i

2
(v + h)(gX1

µ + igX2
µ), ∂µh+

i

2
(v + h)(g′Bµ − gX3

µ))

(
− i

2(v + h)(gX1µ − igX2µ)
∂µh− i

2(v + h)(g′Bµ − gX3µ)

)
(17)

=
1

8
(v + h)2g2(X1

µ + iX2
µ)(X1µ − iX2µ) +

1

2
∂µh∂

µh+
1

8
(v + h)2(g′Bµ − gX3

µ)(g′Bµ − gX3µ)

d) Consider the “mass term”

v2

8

(
g′Bµ − gX3

µ

) (
g′Bµ − gX3µ

)
Then the mass matrix in

{
B,X3

}
basis

M2 =
v2

4

(
g′2 gg′

gg′ g2

)
The eigenvalues are 0 and v2

4 (g′2 + g2). The corresponding eigenvectors are g√
g2+g′2

− g′√
g2+g′2

 and

 g′√
g2+g′2
g√

g2+g′2
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The normalizations of these vectors are chosen so that the following matrix is orthogonal:

O =

 g√
g2+g′2

g′√
g2+g′2

− g′√
g2+g′2

g√
g2+g′2


When we apply this matrix O to the vector:(

Bµ
X3
µ

)
We obtain the two fields:

Aµ = cos θWBµ + sin θWX
3
µ

Zµ = − sin θWBµ + cos θWX
3
µ

e) As we have seen previously the generator that corresponds to the remaining symmetry is

T3 + Y =

(
1 0
0 0

)
. Thus the unitary transformation is given by

U =

(
eiθ(x) 0

0 1

)
Apply this to the gauge field(where we suppress the Lorentz vector indices and also only
consider the X1, X2 terms, as the others donot mix with these two) we have

2∑
i=1

Xi
µ ·

σi

2
→ U

2∑
i=1

Xi
µ ·

σi

2
U † (18)

=

(
eiθ(x) 0

0 1

)(
0 X1 − iX2

X1 + iX2 0

)(
e−iθ(x) 0

0 1

)
=

(
0 (X1 − iX2)eiθ

(X1 + iX2)e−iθ 0

)
hence we can identify W± = 1√

2
(X1 ∓ iX2) and we have W± → e±iθW± under the U(1)EM

transformation.

f) The mass terms are 1
4v

2g2W−µ W
+µ + 1

8v
2(g′2 + g2)ZµZµ with the new definition, and thus

m2
W =

1

4
g2v2 and m2

Z =
1

4
v2((g′)2 + g2)

g) The other neutral particle is

Aµ = cos θWBµ + sin θWX
3
µ (19)

It is orthogonal to Zµ and remains massless, this is our photon.
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h) As

T± =
1

2
(σ1 ± iσ2) (20)

We have explicitly

T+ =

(
0 1
0 0

)
T− =

(
0 0
1 0

)
The covariant derivative of field with SU(2)× U(1) charge is given by

Dµ = ∂µ − igXa
µ

σa

2
− ig′Y Bµ (21)

= ∂µ − i
g

2

(
0 X1 − iX2

X1 + iX2 0

)
− i(gT 3X3

µ + g′Y Bµ)

As W± = 1√
2
(X1 ∓ iX2), we immediately see that

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i(gT 3X3

µ + g′Y Bµ) (22)

Invert the following relation

Aµ = cos θWBµ + sin θWX
3
µ

Zµ = − sin θWBµ + cos θWX
3
µ

we have

X3
µ = cos θWZµ + sin θWAµ (23)

Bµ = cos θWAµ − sin θWZµ (24)

So we have

gT 3X3
µ + g′Y Bµ = gT 3(cos θWZµ + sin θWAµ) + g′Y (cos θWAµ − sin θWZµ) (25)

= Zµ(gT 3 cos θW − g′Y sin θW ) +Aµ(gT 3 sin θW + g′Y cos θW )

=
g

cos θW
Zµ(T 3 cos2 θW − Y sin2 θW ) + eAµQ

=
g

cos θW
Zµ(T 3 −Q sin2 θW ) + eAµQ

So the covariant derivative is

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i g

cos θW
Zµ(T 3 −Q sin2 θW )− ieAµQ (26)
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