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1 The CKM Matrix

Before introducing the Yukawa terms, the Standard Model fermion kinetic terms are

Lkinetic =
∑

ψ=QL,LL,eR,uR,dR

ψ̄i /Dψ (1)

= iūi/∂ui + id̄i/∂di + iēi/∂ei + iν̄iL/∂ν
i
L
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2
ūiλA /G

A
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A
di
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2
ūiL /W

+
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2
ν̄iL /W

+
eiL + h.c.

−
∑

ψ=ui,di,ei,νiL

ψ̄g sin θw /AQψψ

−
∑

ψ=ui,di,ei,νiL

ψ̄
g

cos θw
/Z(T3LPL −Qψ sin2 θw)ψ

where h.c. denotes the Hermitian conjugate. Let us consider the most general Yukawa Lagrangian
below:

LYukawa = −Y (u)
ij ūiR(QjL)T εH − Y (d)

ij H†d̄iRQ
j
L − Y

(e)
ij H†ēiRL

j
L + h.c.

When the Higgs field H takes on a vacuum expectation value (vev), in unitary gauge, we have

H =

(
0
v+h√

2

)
the Yukawa Lagrangian will take the form of

LYukawa = −Y (u)
ij

v√
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v

)
− Y (d)
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2
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j
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)
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j
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)
and will give rise to the masses for all of the fermions except for the neutrinos. Keeping this in
mind we want to diagonalize the Yukawa matrices Y (u),(d),(e)1 . In other words we want to write the

1Why did Mouse win a Nobel prize for explaining “why chicken tastes like everything” to Neo?

1



Yukawa matrices as:

M (u) ≡ Y (u)

√
2

= Uum
(u)V †u

M (d) ≡ Y (d)

√
2

= Udm
(d)V †d

M (e) ≡ Y (e)

√
2

= Uem
(e)V †e

where m are the diagonal mass matrices for the quarks and leptons. U and V are unitary matrices.

We will attempt to diagonalize the Yukawa matrices:

a) We are going to start with the leptons. Show that by using the U(3)eL × U(3)eR global
symmetry for eiL and eiR, we can diagonalize the last term in LYukawa. Show that by doing so
U(3)eL ×U(3)eR breaks down to U(1)3. (One U(1) for each generation.) The conserved charge
associated with this unbroken symmetry is called the lepton family number.

b) We can now use the U(3) rotations associated with diR and diL to diagonalize the Yukawa terms
involving the diR terms. (The second term in LYukawa). Write out the U(3) rotations.

c) Show that it is not possible to diagonalize simultaneously the first term in the Yukawa La-
grangian and the kinetic terms using symmetry arguments. Show that we can still diagonalize
the first term in the Yukawa Lagrangian, but one of the kinetic terms will pick up a matrix
(known as the CKM (Cabibbo-Kobayashi-Maskawa) matrix) that mixes the different genera-
tions of quarks. Show that CKM matrix is unitary.

d) How many parameters in the CKM matrix are physically relevant? To answer this question, it
is instructional to consider two generations first. A unitary 2× 2 matrix can be parameterized
with one angle and three phases:

V =

(
cos θce

iα sin θce
iβ

− sin θce
i(α+γ) cos θce

i(β+γ)

)
(2)

Which of these parameters can be absorbed by quark field redefinition? How many physically
significant parameters are we left with? How many are angles and how many are phases?

e) Now consider three generations. How many physically significant parameters do we have now?
How many are angles and how many are phases? Comment on the difference that arises from
adding a generation other than the change in the number of parameters. Why is this significant?
(Hint: Time reversal is an anti-unitary operator).

f) In the lepton sector the Yukawa terms break the U(3)LL
× U(3)eR global symmetry to a U(1)

symmetry within each generation. Show that, in contrast, in the quark sector the CKM matrix
2 breaks the corresponding global U(3)3 to a single U(1) symmetry. The conserved charge
corresponds to this symmetry is the quark number or one-third of the baryon number.

g) Under what circumstances would the leptonic sector have a mixing matrix analogous to the
CKM matrix?

2He discovered that the Matrix mixes flavors.
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Solution:

a) We can use the SVD process to diagonalize M (e) = Uem
(e)V †e , with this change the correspond-

ing Yukawa term looks like

(Uem
(e)V †e )ij ē

i
Re

j
L (3)

Thus we can redefine our new field as

e′,jL ≡ V
†
e,jke

k
L, e′,iR ≡ (U †e )ile

l
R (4)

In terms of the new fields, the Yukawa coupling will look like∑
i

m
(e)
ii ē
′,i
R e
′i
L (5)

We can drop the primes now, but we cannot do arbitrary U(3) transformations any more as that
will spoil the Yukawa term. Note that this is still invariant under the following transformation
for each generation,

eiL → eiαieiL, eiR → eiαieiR (6)

Thus we find a remaining global symmetry of U(1)3. The corresponding conserved charge is
the lepton family number.

b) We can proceed the exactly same way, by redefining diR and diL as follows.

d′,jL ≡ V
†
d,jkd

k
L, d′,iR ≡ (U †d)ild

l
R (7)

and we will achieve the following diagonalized Yukawa term,∑
i

M
(d)
ii d̄

′,i
Rd
′i
L (8)

c) We want to proceed using the same strategy as before by redefining the fields,

u′,jL ≡ V
†
u,jku

k
L, u′,iR ≡ (U †u)ilu

l
R (9)

but we cannot do this, because we already used the U(3) symmetry of QLs and there is no
reason to believe Ud and Uu coincide. Recall that the Lagrangian for the kinetic terms for
fermions can also be written in the following form where the global symmetry is evidently
U(3)5,

Lfermi =
∑

ψ=QL,LL,eR,uR,dR

ψ̄i /Dψ

We can still proceed we and define u fields as above, but in terms of the new fields, the term in
the kinetic term that couples to W boson will not be diagonal in the flavor basis. Originally,
they are written as follows

− g√
2
ūiL /W

+
diL −

g√
2
ν̄iL /W

+
eiL + h.c. (10)
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Using the transformation just proposed, in terms of the new fields, we have

ū′,jL V
†
u,ji

/W
+
Vd,kid

′,k
L (11)

and its hermitian conjugate term. The CKM matrix is defined to be

VCKM = V †uVd (12)

So that we have W boson interaction as

ū′,iL VCKM,ij /W
+
d′,jL (13)

and its hermitian conjugate. This is unitary as VCKMV
†
CKM = 1 from definition of Ud and Uu’s.

It has 9 real parameters.

d) For the cases with 2 generations, the matrix has 4 real parameter. Redefine the four quark field
can absorb three phases and the angle will be physically important parameter that remains.
The overall phase is a symmetry (as explored later on).

e) We can write a general 3× 3 unitary matrix as:

VCKM = V1V2V3

where V1 and V3 are diagonal matrices of six phases and V2 is a three orthogonal matrix. We can
rephase our fermionic fields in such a way as to absorb five of these six phases. The Lagrangian
still has an overall phase symmetry (see below) which cannot be used to absorb one of the
phases, and so there will still be a phase left over in the CKM matrix. The V2 part contributes
three real angles. so there will be 4 independent physical parameters in CKM matrices. The
difference from the two generation scenario is that we have a phase that cannot be absorbed.
The phase will make the W boson interaction Lagrangian not invariant under time reversal
transformation. As CPT is always invariant. Time reversal violation is also known as CP
violation.

f) Since now the Yukawa term contains CKM matrix which mixes the generations. We cannot
have U(1) symmetries for each generation as for leptons. But we can still have the proposed
overall U(1) symmetry because

Ql(VCKM)lkM
(u)
kj u

C
j,R (14)

is invariant under

Qi → eiαQi

ūi → e−iαūi

d̄i → e−iαd̄i.

Notice that for leptons we can have three αis, now we only have one α shared across three
families.

g) If we introduce right handed neutrinos, we will have another term in the Yukawa Lagrangian
and face the problem we have before for quarks. This is known in literature as PMNS matrix.
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2 Gauge Invariance, Lorentz Invariance, and Renormalizability

For each of the following terms, determine if the term is Lorentz invariant. If it is Lorentz invariant,
determine if the term is gauge invariant or can be made gauge invariant by the insertion of one or
more ε’s. If it is not gauge invariant, state which gauge symmetry or symmetries the term violates.
If the term is both Lorentz invariant and gauge invariant, determine if it is renormalizable.

a) Q̄LQL

b) L̄LLL

c) ēReR

d) ēR /DeR

e) H†H

f) HLL

g) ēRH
†LL

h) ūRH
†QL

i) ēRH
†QL

j) QTLγ
µQLQ

T
LγµLL

k) ūLd̄LQ̄LH

l) LTLγ
2γ0LLHH

Solution:

a) Q̄Q This is zero as

QL =
1 + γ5

2
Q

Q̄LQL = Q†
1 + γ5

2
γ0

1 + γ5

2
Q = Q†γ0

1− γ5

2

1 + γ5

2
Q = 0

b) L̄LLL For the same reason as part a) this is also zero

c) ēReR For the same reason as part a) this is also zero

d) ēR /DeR This exists as part of the kinetic term in the SM Lagrangian, it is Lorentz invariant,
gauge invariant and renormalizable.

e) H†H This exists as part of the potential term in the SM Lagrangian, it is Lorentz invariant,
gauge invariant and renormalizable.

f) HLL This is not Lorentz invariant, as fermions need to show up in pairs.

g) ēRH
†LL This is the Yukawa term in the SM Lagrangian to generate electron mass, it is Lorentz

invariant, gauge invariant and renormalizable.
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h) ūRH
†QL It is Lorentz invariant, but it is not gauge invariant, it breaks U(1) gauge symmetry,

the total hyper charge is −2
3 −

1
2 + 1

6 6= 0.

i) ēRH
†QL This is Lorentz invariant, but it is not gauge invariant, it breaks SU(3) gauge sym-

metry as only quark carries colors here.

j) QTLγ
µQLQ

T
LγµLL This is Lorentz invariant, but it is not gauge invariant, it breaks both SU(3)

and SU(2) gauge symmetry, to make it gauge invariant, we need two ε tensor to make it SU(2)
invariant and one more ε tensor to make it SU(3) invariant. It is not renormalizable as it has
dimension six.

k) ūLd̄LQ̄LH This is not Lorentz invariant, as it has odd number of fermions.

l) LTLγ
2γ0LLHH This is Lorentz invariant, but it is not gauge invariant, as it breaks the SU(2)

gauge symmetry, to make it gauge invariant, we need two ε tensor to make it SU(2) invariant.
It is not reenormalizable as it has dimension five.
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