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1 The Eightfold Way

a) Key facts about Young Tableaux:

• Vertical representations are completely antisymmetric

• Horizontal representations are completely symmetric

• To tensor product with a fundamental representation, add a box to the right or below in
each possible place. A valid Young Tableau should look like upside down stairs.

• For SU(N) put an N in the upper left. The number in each box should be one more than
than the box to its left, and one less than the box above it.

• To find the dimension of the representation multiply all of the boxes together and divide
by the hooks.

Now let’s have some fun with Young Tableaux:

Please use your knowledge to prove the following important fun facts

8 = 4 + 2 + 2 (1)

27 = 10 + 8 + 8 + 1

Show that they are more important for particle physicists than most of the other splittings,
e.g.,

8 = 2 + 3 + 3 (2)

27 = 20 + 2 + 2 + 3

Every baryon is made of 3 quarks and is a fermion, so according to Pauli the wavefunction
should be completely antisymmetric under the exchange of two quarks. The wavefunction of a
baryon is always factorized as the following

ψspaceψspinψflavorψcolor (3)
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b) Let us consider l1 = l2 = 0 case (why two angular momentum?), so that ψspace is always
completely symmetric. In 1963, there were 9 baryons known which all had similar masses and
spin 3

2 . According to the fun facts, which multiplet of the SU(3) flavor (aka isospin) group
they must live in? Which representation of the SU(2) spin group?

c) Using the Young Tableau you drew, what is the symmetry of this multiplet under spin?

d) Using the Young Tableau you drew, what is the symmetry of this multiplet under flavor?

e) Now argue that there must be another symmetry, color, under which the wavefunction is
completely antisymmetric.

f) If color were not there in some different universe, how many spin 3
2 baryon could there be in a

multiplet?

In 1964 Ω−, the tenth baryon was discovered, and the representations of the SU(3) approximate
flavor symmetry or the 8-fold way were completed. We will have to do a bit more work to figure
out which of the other representations are relevant. Since the wavefunction is symmetric in
space, and completely antisymmetric in color, we are looking for representations that are overall
symmetric in spin and flavor.

You have already argued that the singlet of SU(3) color is antisymmetric. The same logic
shows that the singlet of SU(3) flavor is antisymmetric. The two 8’s of SU(3) flavor and two
2’s of SU(2) spin have mixed symmetry. We can choose one of the 8’s to be antisymmetric
under the exchange of the first two quarks and the other to be symmetric under the exchange
of the first two quarks, and similarly for the the 2’s.

g) Why are there no (10, 2), (8, 4), (1, 4), or (1, 2) multiplets of the flavor and spin groups
(SU(3), SU(2))?

2 Magnetic Moment of the Proton and Neutron and Long Live Color

In this problem you will compute the ratio of the magnetic moment of the proton and neutron in the
nonrelativistic limit. To do this, we need to construct the wavefunction of the proton and neutron.
We know from the previous problem that the spin and flavor part of the wavefunction should be
completely symmetric. For example, the spin and flavor parts of the wavefunction of an Ω− with
J3 = 3

2 is

s ↑ s ↑ s ↑ (4)

a) The symmetric combination of u, u, and d quarks is:

∆ =

√
1

3
[uud+ udu+ duu] (5)

There are also two combinations of mixed symmetry. We can take one to be the combination
antisymmetric under exchange of the first two quarks:

pA =

√
1

2
[ud− du]u (6)
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Show that the following state (which is symmetric under the exchange of the first two quarks)
is orthogonal to both pA and ∆:

pS =

√
1

6
[(ud+ du)u− 2uud] (7)

b) By making the replacements u →↑ and d →↓ we immediately get the symmetric spin-up
combination of three spins:

χS =

√
1

3
[↑↑↓ + ↑↓↑ + ↓↑↑] (8)

as well as the spin-up combinations of mixed symmetry that are symmetric under exchange of
the first two spins:

χMS =

√
1

6
[(↑↓ + ↓↑) ↑ −2 ↑↑↓] (9)

and the one antisymmetric under exchange of the first two spins:

χMA =

√
1

2
[↑↓ − ↓↑] ↑ (10)

Show that the combination √
1

2
(pSχMS + pAχMA) (11)

is completely symmetric. You have found the wavefunction for a spin-up proton. Ta da!

c) In the non-relativistic approximation, we can write the magnetic moment of the proton as

µp =

3∑
i=1

〈p ↑ |µi(σ3)i|p ↑〉 (12)

where the sum is over the constituent quarks. The (classical) magnetic moment of a point
charge is

µi = Qi
e

2mi
(13)

Compute the magnetic moment of the proton in terms of the magnetic moments of the up and
down quarks.

d) We can find the neutron magnetic moment by exchanging u and d. By assuming mu ≈ md,
determine the ratio of the proton to neutron magnetic moments. Experimentally the ratio is
measured to be

µp
µn

= −1.45989806(34). Does your calculation agree?

e) Note that suppose again we do not have color symmetry, and we can indeed construct a totally
antisymmetric proton wavefunction, such as

|p ↑〉 =
√

12[pAχMS − pSχMA]

Calculate the magnetic moment ratio again, and show that it is excluded by experiment. Long
live color.
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3 How the Higgs Low Energy Theorem Saves Trees: 50% accurate?
We will take it.

In this problem we explore how the Higgs Low Energy Theorem makes calculations easier.

In class we saw how to choose a gauge such that the would-be Goldstone bosons are “eaten up” and
we are left with one real higgs field and three of the vector bosons become massive. This choice of
gauge is known as the unitary gauge and in this gauge the massive vector boson propagator is given
by:

Dµν (W,Z)(q) =

−i
(
ηµν − qµqν

M2
W,Z

)
q2 −M2

W,Z

.

For large values of q2 the propagator goes as q0 instead of the usual q−2. This scaling means that all
of the divergences are worse, and loop calculations in unitary gauge are usually significantly more
difficult than in other gauges. It is also hard to see that the theory is renormalizable in unitary
gauge. There is another class of gauge choice, known as the Rξ gauge, in which the physical degrees
of freedom are not manifest but loop calculations are generally easier.

We start by setting:

H =

(
w+

1√
2

(v + h+ iz)

)
.

where v is the Higgs VEV, h is the physical higgs, and z and w± are the would-be Goldstone bosons
that were “eaten” in unitary gauge. Our goal is to just to draw the Feynman diagrams for h→ γγ
(not compute them), so we will first determine (some of) the new vertices that are present in Rξ
gauge. We will not be interested in the Feynman rules, only which vertices are present.

a) (Skip this part at first and come back to it if you have time.) Show that the quartic higgs
self-interaction term gives rise to a w+w−h interaction.

b) (Skip this part at first and come back to it if you have time.) Show that the higgs kinetic term
gives rise to w+w−A, w±hW∓, w±W∓A, hw±W∓A, and w+w−AA interactions.

c) Draw the diagrams that contribute to the higgs to two photon decay h → γγ at one loop in
Rξ gauge.

d) Draw the diagrams that you would need to compute to use the Higgs Low Energy Theorem to
find the higgs to two photon partial decay rate.1 (Hint: Don’t be afraid.... ) Do you think the
diagrams in part (c) or part (d) are easier to compute?

1If you followed Sean’s advice on how to become a beta person, you may have already computed some of these.

4


	The Eightfold Way
	Magnetic Moment of the Proton and Neutron and Long Live Color
	How the Higgs Low Energy Theorem Saves Trees: 50% accurate? We will take it.

