Standard Model Solution 6: Strange and Charming

21 January 2016

1 Weak Decays of D Mesons

We can understand some of the properties of heavy quark mesons using the approximate $S U(3)$ flavor symmetry of the light quarks. In particular we will find relationships between some of the semileptonic partial decay widths of the D mesons. The D mesons are pseudoscalar mesons made of a charm quark and a light antiquark (or a light quark and anticharm quark).
a) The weak decay of the charm quark $\left(c \rightarrow s e^{+} \nu\right)$ can be described by the following Fermi Lagrangian:

$$
\begin{equation*}
\mathcal{L}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} \bar{s} \gamma^{\mu}\left(1-\gamma^{5}\right) c \bar{e} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{e} \tag{1}
\end{equation*}
$$

This interaction breaks the $S U(3)$ flavor symmetry of the light quarks. By figuring out how this interaction breaks the flavor symmetry, we can determine the interactions of the D mesons with the light quark pseudoscalar mesons. We can rewrite (1) as:

$$
\begin{equation*}
\mathcal{L}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} \bar{q} X \gamma^{\mu}\left(1-\gamma^{5}\right) c \bar{e} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{e} \tag{2}
\end{equation*}
$$

where q is the light quark triplet of $S U(3)_{\text {flavor }}$

$$
q=\left(\begin{array}{l}
u \tag{3}\\
d \\
s
\end{array}\right)
$$

and X is the constant vector

$$
X=\left(\begin{array}{l}
0 \tag{4}\\
0 \\
1
\end{array}\right)
$$

We will ignore the fact that X is a constant for now (we will remember again in part (d)), and pretend that it transforms under $S U(3)_{\text {flavor. }}$. In other words, we will treat X as a spurion.

This will allow us to determine relations among the interactions of the D mesons with the light pseudoscalar mesons, because the breaking of the $S U(3)_{\text {flavor }}$ symmetry by weak interactions is determined by X. How should X transform if we want (2) to be invariant under $S U(3)_{\text {flavor }}$?
b) There are three D mesons containing an anticharm quark: $\bar{D}^{0}=\bar{c} u, D^{-}=\bar{c} d$, and $D_{S}^{-}=\bar{c} s$. What representation of $S U(3)_{\text {flavor }}$ do these three D mesons live in?
c) Recall that the pseudoscalar mesons M form an octet (i.e. adjoint) of $S U(3)_{\text {flavor }}$. Still pretending that X transforms to make (2) invariant under $S U(3)_{\text {flavor }}$ (as in part (a)), what $S U(3)_{\text {flavor }}$ invariant combinations can you make out of X, M, D, and the leptonic weak current $\bar{e} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{e}$?
d) Now we will remember that X is actually a constant. By expanding out the term you found in the previous part, argue that

$$
\begin{equation*}
\Gamma\left(\bar{D}^{0} \rightarrow K^{+} e \bar{\nu}_{e}\right)=\Gamma\left(D^{-} \rightarrow K^{0} e \bar{\nu}_{e}\right)=\frac{3}{2} \Gamma\left(D_{S}^{-} \rightarrow \eta e \bar{\nu}_{e}\right) \tag{5}
\end{equation*}
$$

Recall that the pseudoscalar meson octet is:

$$
M=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \tag{6}\\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & \frac{-2 \eta}{\sqrt{6}}
\end{array}\right)
$$

e) Compare your result with the following data (taken from the PDG):

Particle	Lifetime $\left(10^{-15} \mathrm{~s}\right)$	Decay Channel	Branching Ratio (\%)
D^{-}	1040 ± 7	$K^{0} e^{-} \bar{\nu}_{e}$	8.83 ± 0.22
\bar{D}^{0}	410.1 ± 1.5	$K^{+} e^{-} \bar{\nu}_{e}$	3.57 ± 0.06
D_{S}^{-}	500 ± 7	$\eta e^{-} \bar{\nu}_{e}$	2.67 ± 0.29

Solution:

a) 3. As $\bar{q} X$ needs to be a singlet.
b) also 3. As \bar{c} is a singlet. D mesons transform as the associate the quark tripet.
c) This is clear $\overline{3} A d j 3=$ singlet. So the term we can write down is $X^{\dagger} M D$.
d) We have

$$
\begin{aligned}
X^{\dagger} M D & =(0,0,1)\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & \frac{-2 \eta}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{c}
\bar{D}^{0} \\
D^{-} \\
D_{S}^{-}
\end{array}\right) \\
& =\left(K^{-}, \bar{K}^{0}, \frac{-2 \eta}{\sqrt{6}}\right)\left(\begin{array}{c}
\bar{D}^{0} \\
D^{-} \\
D_{S}^{-}
\end{array}\right) \\
& =K^{-} \bar{D}^{0}+\bar{K}^{0} D^{-}+\frac{-2 \eta}{\sqrt{6}} D_{S}^{-}
\end{aligned}
$$

The decay rate ratio will be proportional to the square of the coefficient, so it is $1: 1: \frac{2}{3}$.
e) Recall

$$
\Gamma_{t o t}=\frac{1}{\tau}
$$

We have

$$
\begin{align*}
\frac{\Gamma\left(\bar{D}^{0} \rightarrow K^{+} e \bar{\nu}_{e}\right)}{\Gamma\left(D^{-} \rightarrow K^{0} e \bar{\nu}_{e}\right)} & =\frac{\Gamma_{t o t}^{0} B r^{0}}{\Gamma_{\text {tot }}^{-} B r^{-}} \tag{9}\\
& =\frac{\tau^{-} B r^{0}}{\tau^{0} B r^{-}} \\
& =\frac{1040 * 3.57 \%}{410.1 * 8.83 \%}=1.025
\end{align*}
$$

and

$$
\begin{align*}
\frac{\Gamma\left(D^{-} \rightarrow K^{0} e \bar{\nu}_{e}\right)}{\Gamma\left(D_{S}^{-} \rightarrow \eta e \overline{\nu_{e}}\right)} & =\frac{\Gamma_{t o t}^{-} B r^{-}}{\Gamma_{\text {tot }}^{S} B r^{S}} \tag{10}\\
& =\frac{\tau^{S} B r^{-}}{\tau^{-} B r^{S}} \\
& =\frac{500 * 8.83 \%}{1040 * 2.67 \%}=1.59
\end{align*}
$$

2 Baryon Mass Splittings

In this problem we will derive the Gell-Mann-Okubo mass formula, which clearly shows that although strange quark is a bit heavy, the $S U(3)$ flavor symmetry is still pretty predictive.

$$
B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda^{0}}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda^{0}}{\sqrt{6}} & n \\
\Xi^{-} & \Xi^{0} & \frac{-2 \Lambda^{0}}{\sqrt{6}}
\end{array}\right)
$$

There is no singlet baryon state due to the anti-symmetric of the wave function. (why?) The Lagrangian is given by

$$
\mathcal{L}=\operatorname{Tr}\left[\bar{B}\left(i \not \partial-\mu_{0}\right) B\right]-\alpha \operatorname{Tr}\left[\bar{B} \Delta_{s} B\right]-\beta \operatorname{Tr}\left[\Delta_{S} \bar{B} B\right]
$$

where

$$
\Delta_{S}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & m_{s}
\end{array}\right)
$$

Solution: See the notebook. From the notebook, we can read off,

$$
\begin{align*}
m_{p, n} & =\mu_{0}+\alpha m_{s} \tag{11}\\
m_{\Lambda} & =\mu_{0}+\frac{2}{3} \alpha m_{s}+\frac{2}{3} \beta m_{s} \\
m_{\Sigma} & =\mu_{0} \\
m_{\Xi} & =\mu_{0}+\beta m_{s}
\end{align*}
$$

which implies

$$
\begin{equation*}
\frac{m_{\Sigma}+3 m_{\Lambda}}{2}=\mu_{0}+\alpha m_{s}+\beta m_{s}=m_{\Sigma}+m_{\Xi} \tag{12}
\end{equation*}
$$

This is the Gell-Mann-Okubo mass formula. Works to better than 1%.

