ITEC 1620 Object-Based Programming

Lecture 11
User Defined Datatypes

Real-World Programming

- Determine the problem
- Define the problem
- Analyze the problem
- Solve the problem

A Case Study

- The Client
 - A credit card company
- The Assignment
 - Develop a support program to handle all of their credit card transactions

Determine the Problem

- What is happening?
 - Credit cards are issued
 - Purchases are made
 - Bills are sent out
- Note: Does not answer "What is the problem?" – clients usually know they have problems, not what they are

Define the Problem

- How much will be done?
 - Prototype?
 - Comprehensive system?
 - Comprehensive sub-component?
 - Random walk?

Analyze the Problem

- What is needed to issue a credit card?
 - Customer info, credit card info
- What is needed to handle a purchase?
 - Credit card info, purchase info
- What is needed to send out statements?
 - Customer info, credit card info

Solve the Problem

 Write (sub) programs to solve (sub) problems

- The easy part
 - This can be sent to China, India, Africa, ...

Problem Modularization

- Break large problem into smaller problems
- Develop smaller programs for smaller problems
- Makes development (in teams) easier
- Makes debugging and maintenance easier – working on a smaller program

Problem Modularization II

- A computer is a machine that processes data
- Modularize problems by processes or data?
 - Processes -> structured programming
 - Data → object-oriented programming

Structured Programming

- Decompose each task into its algorithmic components
 - Sequences
 - Branches
 - Loops

Processes Acting on Data

- Issuing cards
 - Write a process that initializes card data
- Handling purchases
 - Write a process that updates card data
- Sending statements
 - Write a process that accesses card data

Problems with Structured Programming

- Processes from all over affect card data
 - How to organize processes?
 - How to ensure that card data is secure?
- What is most important to a bank?
 - Record keeping → data
- Object-oriented design is preferred for most modern applications

Object-Oriented Analysis and Design

- Problem definition / OO analysis
 - What is a credit card?
 - What are the transactions?
 - How is a transaction handled?
 - Who makes the transactions?

Object-Oriented Analysis and Design II

- What are the model components?
 - Credit cards
 - Card holders
 - Transactions

Object-Oriented Analysis and Design III

- What are the component functions/responsibilities?
 - Transaction
 - ➤ Update credit card balance
 - ➤ Update credit card statement
 - Update company record

Object Design

- Bottom-up
 - Identify all data elements and group them into logical sets
- Data
 - Employee ID, account number, company record, balance, credit limit, etc
- Credit card
 - Account number, balance, credit limit

Object Design II

- Top-down
 - Identify key model components and fill in their data elements
- Model Components
 - Credit cards, card holders, transactions
- Card holder
 - Name, address, credit rating, etc

Objects

- CreditCard
 - Fields (data)

 - ▶ balance
 - **≻creditLimit**
 - ➤ transactionsList

Objects II

- AccountHolderInformation
 - Fields (data)
 - **≻**name
 - ➤ address
 - ➤ phoneNumber
 - >personalID (e.g. SIN)

Objects III

- Transaction
 - Fields (data)
 - > date
 - **>**amount
 - ➤ description

Objects IV

- CreditCard
 - Methods (actions)
 - ➤getBalance()

 - ➤makePurchase()
 - >makePayment()
 - // get/update information

Primitive Data and Objects

- Primitive data are primitive!
- Want to group pieces of data into larger, coherent sets that better represent the real world
- Groups of data are objects
 - Templates for data are classes
 - Known as "structures" in structured programming languages

Example

- Input the coordinates for a triangle
 - **1** x1, x2, x3
 - **■** y1, y2, y3
- The groupings are (x1, y1), (x2, y2),
 (x3, y3) not (x1, x2, x3), (y1, y2, y3)
- How can we make this clear?

Example II

- Create a "Point" object
- Each Point has an x and a y coordinate
 - point1.x, point1.y
 - point2.x, point2.y
 - point3.x, point3.y

Example III

Primitive data

x1

y1

x2

y2

x3

у3

Example IV

User-Defined Data

Point

x

y

Point	
X	
у	

Point		
X		
у		

Classes and Objects

- Classes are a template for objects
 - Build classes in ITEC2610
 - Use classes in ITEC1620

Concepts before code

Readings and Assignments