
ITEC1620
Object-Based Programming

Lecture 14
References IIReferences II

Using Classes

 What was necessary before using a
class?
Construction

Random random = new Random();
Scanner scan new Scanner(System in);Scanner scan = new Scanner(System.in);

Constructors

 Syntax has ()
 () indicate a method()

 Constructors are a special method that Constructors are a special method that
return a new instance of a class
May also pass in parametersMay also pass in parameters

Constructors II

 Special method, special syntax

<access modifier> Classname
(<parameters>)(<parameters>)

N t t t b i t f No return type – must be instance of
class

 Identifier must be same as class

Example

bli l P ipublic class Point
{

bli ipublic int x;
public int y;

public Point (int x, int y)
// t t i d t i t// parameters get assigned to instance
variables

}}

Example II

Point corner = new Point (3, 5);

corner Point

3x

5y

Review

 Java does not know how to initialize
your datatype

 You must use a constructor
A constructor is a special method that has

th th lthe same name as the class
 The constructor allocates space in

memory for all the fields of the classmemory for all the fields of the class
Space allocation requires “new”

Review II

 You must use the constructor before
using your objects

Point pointA;
pointA x = 0; // errorpointA.x = 0; // error

P i t i tB P i t()Point pointB = new Point();
pointB.x = 0; // OK

Review III

 What does the declaration do?
Point pointA; pointAp ; p

 What does the constructor do?
pointA = new Point(); P i tpointA = new Point();

x

Point

x

yy

Constructor Actions

 Allocates memory space for all fields
Numerical fields initialized to 0
Boolean fields initialized to false
Non-primitive (object) fields initialized to p (j)

null
 Additional initializations from dd t o a t a at o s o

parameters
 Returns a reference to the new object Returns a reference to the new object

Actions in Detail

Point corner = new Point (3, 5);

 Declaration

corner

Actions in Detail II

 Allocates memory space for all fields
Occurs before any additional initializationsy

Point

x

Point

x

y

Actions in Detail III

 Initializations from parameters

(3, 5) Point

3x

5y

Actions in Detail IV

 Returns a reference to the new object

corner
Point

3x

5y

Questions?

Constructors and Static Constructors and Static
Methods

 A constructor is a (special) method in a
class that can be called without an
instance
 It is called to create the instance

 A method that can be called without the
instance is static (i.e. stateless)instance is static (i.e. stateless)
All constructors are static by default

Null Reference

 Null is a reference to no object
Point corner;

corner
Uninitialized
Point corner = null;

cornercorner
 Initialized to null

Static Methods

 Normal methods can access the fields
of an object
 void setX (int newX);

 Static methods can be called without aStatic methods can be called without a
constructor
No constructor to create fields no accessNo constructor to create fields, no access

to fields

Static Methods II

 Static methods already seen

System.out.println();
Math sqrt();Math.sqrt();

Overloading

 An overloaded method/constructor has
the same identifier with different

tparameters
 Constructors must be overloaded since

th id tifi i fi d t th lthe identifier is fixed to the class name
 Methods can be overloaded to provide

th “ ” f ti d diff tthe “same” function under different
circumstances

Method Overloading

 System.out.println()
Can handle nothing, Strings, numbers…g g

 System.out.println()
 System out printStringln(“hello”) System.out.printStringln(hello)
 System.out.printIntln(5)
 System.out.printFloatln(5.5)

Method Overloading II

 Division

public int divide (int dividend, int divisor)

public double divide (double dividend,
d bl di i)double divisor)

Parameter Matching and Parameter Matching and
Promotion

 5/2
 5 is int, 2 is int
 Call divide with int parameters and return an int

 5/2.0
 5 is int, 2.0 is double
 double does not match int
 int can match double with promotion int can match double with promotion
 Call divide with double parameters and return a

double

Pass-by-copy

 All parameters in JAVA are passed by
copy

 Since methods only have a copy of the
original values, methods cannot cause g ,
side-effects

Pass-by-copy II

int five = 5;
int ten = 10;;
int largest = max (five, ten);

 Expect five to be 5 and ten to be 10
ft th d llafter method call

Pass-by-copy III

 max() only works with local variables
Not five, ten

 Local variables “die” after method ends
max()

five 5
max()

100localX

ten 10 10localY

100localX

Pass-by-copy IV

 Pass-by-copy is safey py
Good encapsulation
No side-effectsNo side effects

Pass-by-reference

 All parameters in JAVA are passed by
copy

 What happens if we pass an object?
Object identifiers contain referencesObject identifiers contain references
Passing a copy of an object passes a copy

of the object referencej
This is pass-by-reference!

Pass-by-reference II

AnInt intA = new AnInt();
AnInt intB = new AnInt();
intA.setValue(5);
intB.setValue(intA.value);

// guaranteed safe – intA value pass-by-copy
intB.setValue(intA);();

// maybe unsafe – intA value pass-by-
reference

Pass-by-reference III

public void setValue (int newValue)
 newValue is only local copyy py
No outside effects

public void setValue (AnInt newValue)
 newValue is a local copy
Copy can still reference outside data!

Pass-by-reference IV

intB.setValue(intA.Value); setValue()

thi
intA intB

newValue

this

100newValue

AnInt
AnInt

100

5value
5value

AnInt

Pass-by-reference V

intB.setValue(intA); setValue()

thi
intA intB

newValue

this

newValue

AnInt
AnInt

100value
5value

AnInt

Questions?

Exploiting Pass-by-Reference

 Methods have one return value
 Objects can contain multiple values

Make return type an object Make return type an object

Exploiting Pass-by-Reference II

public static Point getXY();
Point out = getXY();g ();
out getXY()

Point
returnObj

x

y

Exploiting Pass-by-Reference III

public static void getXY (Point storage)
Point out = new Point();();
getXY(out);
out getXY()P i tout getXY()

storage

Point

x

y

x

y

Readings and Assignments

 Text sections (5th and 6th edition)
6.8

 Text sections (7th edition)
7 87.8

