ITEC1620
Object-Based Programming

Lecture 14
References Il

-

Using Classes

=

e \What was necessary before using a
class?

¥ Construction

Random random = new Random();
Scanner scan = new Scanner(System.in);

/

-

Constructors

=

e Syntax has ()
" () indicate a method

e Constructors are a special method that
return a new instance of a class

" May also pass Iin parameters

/

Constructors |l

e Special method, special syntax

<access modifier> Classname
(<parameters>)

e NoO return type — must be instance of
class

\o ldentifier must be same as class

/

-

Example

public class Point
{
public Int X;
public int y;

public Point (int X, Int y)

/I parameters get assigned to instance
variables

/

-

Example Il

Point corner = new Point (3, 5);

Point

corner ~_

T~

Review

e Java does not know how to Initialize
your datatype
e YOU must use a constructor

" A constructor Is a special method that has
the same name as the class

e The constructor allocates space In
memory for all the fields of the class

" Space allocation requires “new”

/

-

Review I

~

e YOU must use the constructor before
using your objects

Point pointA;
noINtA.xX = O; /] error

Point pointB = new Point(),
nointB.x = 0; [/ OK

/

Review I

e \What does the declaration do?
Point pointA,; pointA
e \What does the constructor do?

/

/

pointA = new Point();

Point

/

Constructor Actions

~

e Allocates memory space for all fields
" Numerical fields initialized to O
" Boolean fields initialized to false
" Non-primitive (object) fields initialized to
null

e Additional initializations from
parameters

\o Returns a reference to the new object /

-

Actions In Detall

Point corner = new Point (3, 5);

e Declaration

corner

N

-

Actions In Detail |l

~

e Allocates memory space for all fields
" Occurs before any additional initializations

Point

-

Actions In Detail Il

e Initializations from parameters

(3’ 5) Point

-

Actions In Detalil IV

~

e Returns a reference to the new object

corner ~—_

T~

Point

-~

Questions?

/

Constructors and Static
Methods

~

e A constructor is a (special) method in a
class that can be called without an
Instance

" |t Is called to create the instance

e A method that can be called without the
Instance Is static (I.e. stateless)

® All constructors are static by default

Null Reference

e Null Is a reference to no object
Point corner;

corner

corner M

" Uninitialized
Point corner = null;

" Initialized to null

/

-~

Static Methods

=

e Normal methods can access the fields
of an object

" void setX (int newX);
e Static methods can be called without a
constructor

® No constructor to create fields, no access
to fields

Static Methods Il

e Static methods already seen

System.out.printin();
Math.sqrt();

/

Overloading

=

e An overloaded method/constructor has
the same identifier with different
parameters

e Constructors must be overloaded since
the 1dentifier Is fixed to the class name

e Methods can be overloaded to provide
the “same” function under different
circumstances

/

Method Overloading

e System.out.printin()
® Can handle nothing, Strings, numbers...

e System.out.printin()

e System.out.printStringin(“hello”)
e System.out.printintin(5)

e System.out.printFloatin(5.5)

Method Overloading i

=

e Division
public int divide (int dividend, int divisor)

public double divide (double dividend,
double divisor)

/

-

Parameter Matching and
Promotion

~

=

o 5/2

"5isint, 2is Int

" Call divide with int parameters and return an int
e 5/2.0

" 5isint, 2.0 Is double

" double does not match int

" Int can match double with promotion

" Call divide with double parameters and return a
double

/

-

Pass-by-copy

=

e All parameters in JAVA are passed by

copy

e Since methods only have a copy of the
original values, methods cannot cause
side-effects

-

Pass-by-copy Il

=

Int five = 5;
int ten = 10;
Int largest = max (five, ten);

e Expect five to be 5 and ten to be 10
after method call

/

Pass-by-copy Il

~

" Not five, ten

five 5

10

ten
N

e max() only works with local variables

e Local variables “die” after method ends

max()
localX 100
localY 10

-

Pass-by-copy IV

e Pass-by-copy Is safe
" Good encapsulation
" No side-effects

/

Pass-by-reference

=

e All parameters in JAVA are passed by

Copy
e What happens if we pass an object?
" Object identifiers contain references

" Passing a copy of an object passes a copy
of the object reference

" This Is pass-by-reference!

4 N

Pass-by-reference Ii

Anint intA = new Anlint();
Anint intB = new Anlint();
intA.setValue(5);

INtB.setValue(intA.value);

/[guaranteed safe — IintA value pass-by-copy
IntB.setValue(intA);

// maybe unsafe — IntA value pass-by-

reference
_ %

Pass-by-reference Il

public void setValue (int newValue)

e newValue is only local copy
" No outside effects

public void setValue (Anint newValue)

e newValue is a local copy
" Copy can still reference outside data!

=

/

Pass-by-reference IV

~

IntB.setValue(intA.Value);

INtA /

Anint

value

NS

setValue()
this /
INtB
n alue 100
v o
Anint
value 5 /

/

Pass-by-reference V

~

NS

IntB.setValue(intA); setValue()
this
INtA / INtB
/ N alue | —
4./*//
Anint
Anint
value 100 value . /

-~

Questions?

Exploiting Pass-by-Reference

e Methods have one return value
e Objects can contain multiple values
e Make return type an object

Exploiting Pass-by-Reference Il

~

public static Point getXY();
Point out = getXY/();

out
Point

~—

getXY()

returnODbj

Exploiting Pass-by-Reference Il

~

public static void getXY (Point storage)
Point out = new Point();

getXY(out);
out Point GELVY
\\ « storage
y /

-

Readings and Assignments

~

=

e Text sections (5" and 6t edition)
6.8

e Text sections (7 edition)
7.8

