
Collections (15 marks):

The API for the Money class is given below. Each instance of this class represents an
amount of dollars and cents. The amount of cents will be an integer between 0 and 99
(inclusive).

The API for the Product class is given below. Each instance of a Product has a cost, a
Stock Keeping Unit (SKU), and a Description.

Method Summary

Constructor Summary

Money()
Construct a Money amount with 0 dollars and 0 cents.

Money(int d, int c)
Construct a Money amount with d dollars and c cents.

boolean isGreaterThan(Money amount)
Returns true if this Money amount is greater than amount.

void subtract(Money amount)
Decrease this Money amount by amount.

void add(Money amount)
Increase this Money amount by amount.

Method Summary

Constructor Summary

Product(Money cost, String description, int sku)
Construct a new Product with the given cost, description, and sku.

String getDescription()
Returns the description of this Product.

int getSKU()
Returns the Stock Keeping Unit of this Product.

Money getCost()
Returns the cost of this Product.

The API for the Warehouse class is given below. Each instance of this class contains
the Products and the quantity of each Product that are stored in the Warehouse.

Field Summary

Method Summary

Constructor Summary

static int MAX_PRODUCTS
The maximum number of different Products that a
Warehouse can store.

Warehouse ()
Constructs a new Warehouse.

void addProduct (Product product)
Adds the product (with 0 units) to the Warehouse inventory. The
added product will be numbered as the numProducts Product
(numProducts will then be increased by 1).

void addUnit (int i)
Adds one unit of the ith product to the Warehouse inventory. Products
are 0-indexed from 0 to numProducts-1.

void addUnit (Product product)
Adds one unit of the given product to the Warehouse inventory.

int getNumProducts ()
Returns the number of different Products currently stored in the
Warehouse. Products are 0-indexed from 0 to numProducts-1.

Product getProduct (int i)
Returns the ith product in the Warehouse. Products are 0-indexed from
0 to numProducts-1.

int getQuantity (int i)
Returns the quantity of the ith product that is currently stored in the
Warehouse. Products are 0-indexed from 0 to numProducts-1.

 Surname:_____________ First name:______________ Student #: _______________

Write a code fragment in JAVA that will determine the total value of all Products stored
in the given Warehouse.

// Money totalValue
// Warehouse warehouse

Collections (15 marks):

The API for the File class is given below. Each instance of this class represents a file
(e.g. a music file) that has a name and a size (in bytes).

The API for the Compressor class is given below. The methods allow Files to be
compressed and decompressed. Note: to use a File (e.g. to play a music file), it must be
decompressed, but it may be stored in a compressed state to save space.

Method Summary

Constructor Summary

File()
Constructs a new File with no name and zero size.

boolean isCompressed()
Returns true if this File is compressed, false otherwise.

String getName()
Returns the name of this File.

Method Summary

int getSize()
Returns the size (in bytes) of this File.

File(String name, int size)
Constructs a new File with the given name and the given size.

static File compress(File file)
If the given file is uncompressed (i.e. normal size), returns a
compressed copy of the file. Otherwise, returns null.

static File decompress(File file)
If the given file is compressed, returns a decompressed (i.e.
normal size) copy of the file. Otherwise, returns null.

The API for the MemoryCard class is given below. Each instance of this class can store
up to 100 Files that can take up to 100 Mbytes of space. Note: files are 0-indexed.

Method Summary

Constructor Summary

MemoryCard()
Constructs a new MemoryCard with zero Files.

Field Summary

static int MAX_FILES
The maximum number of Files that can be stored on a
MemoryCard.

void delete(int index)
Deletes the File at the given index.

boolean insertFile(int index, File file)
Attempts to insert the given file at the given index. Returns true
if the file is inserted successfully and false otherwise (e.g. if there is
insufficient space on the MemoryCard). Note: this method will
overwrite/delete any existing Files at the given index.

int getAvailableMemory()
Returns the amount of memory still available on this MemoryCard.

File findFile(int index)
Returns the File stored on this MemoryCard at the given index.
Returns null if there is no File at the given index.

static int MAX_SPACE
The maximum total space available for Files to be stored on a
MemoryCard.

MemoryCard(File[] files)
Attempts to construct a new MemoryCard with the given files. Will add Files in
sequence until MAX_FILES or MAX_SPACE has been reached.

int getUsedMemory()
Returns the amount of memory currently used by Files on this
MemoryCard.

int getNumFiles()
Returns the number of Files currently stored on this MemoryCard.

Surname:_____________ First name:______________ Student #: _______________

Write a code fragment in JAVA that will determine the amount of space saved by using
compression on the MemoryCard (i.e. for all compressed files, sum their size difference
between been compressed and uncompressed).

// MemoryCard card;

