ITEC1620 Object-Based Programming

Lecture 2 Iconic Programming I

Sequence

- Standard operation of a computer
- Actions are performed in sequence
 - First action
 - Second action
 - Last action

Program runs same way each time

Actions

Action

- Manipulate data
- Iconic Programmer
 - Declare
 - Assign
 - Output

Declarations

- A computer needs to allocate storage space for all data that it manipulates
 - Declaration gives a meaningful name to the data element/storage space
- Iconic Programmer
 - Only integer data elements
 - Give name in text box

Assignments

- Once the computer has a storage space, it can store/change data in that space
- Iconic Programmer
 - Random value
 - Result of mathematical expression
 - User input

Mathematical Expressions

- value = value + 1 (math)
 - The value is equal to the value plus one
 - Impossible mathematically
- value = value + 1 (computers)
 - The storage space for value will become the previous contents plus one
- Actions: perform math, perform storage

Output

- When computer is done with program (or during debugging), we may want to see the result – what is in a storage space
- Iconic Programmer
 - Value in storage space
 - Text information (nominally stored)

Branching

 Branching allows a program to select paths

- Diamonds represent conditions
- Two outgoing paths from condition
- Paths (with sequences) can be skipped

Example of Branching

- Program specification
 - Make withdrawal if funds are sufficient
- Program actions
 - Check account balance and withdraw amount
 - Make withdrawal
- Need to make withdrawal optional

Decisions

- Branching selects from two paths
- Two paths \rightarrow two states
 - true (yes)
 - false (no)
- Diamond contains a condition
 - A condition is a true-false question

Relational Operators

- How to turn integers into true/false?
 - Greater than
 - Less than
 - Equal to
 - Not equal to
 - Greater than or equal to
 - Less than or equal to

Compound Conditions

Allow us to put two (or more) subconditions into a condition

- AND
- OR

AND

 The expression is TRUE if and only if both input variables are TRUE

	TRUE	FALSE
	1	0
TRUE	TRUE	FALSE
1	1	0
FALSE	FALSE	FALSE
0	0	0

OR

The expression is TRUE if either input variable is TRUE

	TRUE	FALSE
	1	0
TRUE	TRUE	TRUE
1	1	1
FALSE	TRUE	FALSE
0	1	0

Inclusive and Exclusive OR

Computers use inclusive OR

- Stop the bus if passengerA OR passengerB wants to get off
- Exclusive OR is different
 - You can get \$1000 cash back or 0% financing

Questions?

Sample Condition I

 Ensure that the savings account balance has enough to allow the withdrawal amount

balance >= amount

Sample Condition II

- Ensure that the input is between 1 and 10
 - 1 <= input AND input <= 10</p>

Sample Program I

What is your grade classification?

- ► >= $80 \rightarrow$ honours
- ► >= $60 \rightarrow \text{pass}$
- Not pass

Sample Program II

 Write a program that takes three inputs and outputs the largest value

Sample Programs

- Program 2
- Program 3
- Program 4

Readings and Assignments

- Text section (5th, 6th, or 7th edition)
 5.1
- Lab Assignment 1