ITEC1620
 Object-Based Programming

Lecture 2

Iconic Programming I

Sequence

- Standard operation of a computer
- Actions are performed in sequence
- First action
- Second action
- ...
- Last action
- Program runs same way each time

Actions

- Action
- Manipulate data
- Iconic Programmer
- Declare
- Assign
- Output

Declarations

- A computer needs to allocate storage space for all data that it manipulates - Declaration gives a meaningful name to the data element/storage space
- Iconic Programmer
- Only integer data elements
- Give name in text box

Assignments

- Once the computer has a storage space, it can store/change data in that space
- Iconic Programmer
- Random value
- Result of mathematical expression
- User input

Mathematical Expressions

- value = value + 1 (math)
- The value is equal to the value plus one
- Impossible mathematically
- value = value + 1 (computers)
- The storage space for value will become the previous contents plus one
- Actions: perform math, perform storage

Output

- When computer is done with program (or during debugging), we may want to see the result - what is in a storage space
- Iconic Programmer
- Value in storage space
- Text information (nominally stored)

Branching

- Branching allows a program to select paths
- Diamonds represent conditions
- Two outgoing paths from condition
- Paths (with sequences) can be skipped

Example of Branching

- Program specification
- Make withdrawal if funds are sufficient
- Program actions
- Check account balance and withdraw amount
- Make withdrawal
- Need to make withdrawal optional

Decisions

- Branching selects from two paths
- Two paths \rightarrow two states
- true (yes)
- false
(no)
- Diamond contains a condition
- A condition is a true-false question

Relational Operators

- How to turn integers into true/false?
- Greater than
- Less than
- Equal to
- Not equal to
- Greater than or equal to
- Less than or equal to

Compound Conditions

- Allow us to put two (or more) subconditions into a condition
- AND
- OR

AND

- The expression is TRUE if and only if both input variables are TRUE

	TRUE	FALSE
	1	0
TRUE	TRUE	FALSE
1	1	0
FALSE	FALSE	FALSE
0	0	0

OR

- The expression is TRUE if either input variable is TRUE

	TRUE	FALSE
	1	0
TRUE	TRUE	TRUE
1	1	1
FALSE	TRUE	FALSE
0	1	0

Inclusive and Exclusive OR

- Computers use inclusive OR
- Stop the bus if passengerA OR passengerB wants to get off
- Exclusive OR is different
- You can get \$1000 cash back or 0\% financing

Questions?

Sample Condition I

- Ensure that the savings account balance has enough to allow the withdrawal amount
- balance >= amount

Sample Condition II

- Ensure that the input is between 1 and 10
- 1 <= input AND input <= 10

Sample Program I

-What is your grade classification?

- >= $80 \rightarrow$ honours
- >= $60 \rightarrow$ pass
- Not pass

Sample Program II

- Write a program that takes three inputs and outputs the largest value

Sample Programs

- Program 2
- Program 3
- Program 4

Readings and Assignments

- Text section ($5^{\text {th }}, 66^{\text {th }}$, or $7^{\text {th }}$ edition)
- 5.1
- Lab Assignment 1

