
Iconic Programming for Flowcharts, Java, Turing, etc

Stephen Chen
Information Technology Program

York University
4700 Keele Street
Toronto, Ontario

sychen@yorku.ca

Stephen Morris
Computer Science Department

Dr. Norman Bethune Collegiate Institute
200 Fundy Bay Blvd

Scarborough, Ontario

stevemorris@rogers.com

ABSTRACT
One of the largest barriers to learning programming is the precise
and complex syntax required to write programs. This barrier is a
key impediment to the integration of programming into the core
curriculum of general high school science courses – there is not
enough time to learn both syntax and programming in a three-
week course module. The newly developed “Iconic Programmer”
allows executable programs to be written through mouse clicks
and menus, includes symbol by symbol translation into Java and
Turing, and comes complete with a three-week lesson plan
suitable to new programmers. To date, the new tool has been
used effectively with full-semester, introductory programming
courses at both the university and high school level.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Human Factors

Keywords
CS0, CS1, high school programming, non-majors, visualization
tools

1. INTRODUCTION
The increasing pervasiveness of computers in modern society is
raising the status of computer programming towards the level of
being a core topic for any general education program. This rising
status supports Alan Perlis’ belief that any general, liberal
education would benefit from a foundation that includes computer
programming since programming involves the concept of
processes [4]. Unfortunately, traditional introductory
programming courses at the university level have notoriously high
attrition rates [7][9] and discouragingly low non-major appeal [5].
These negative features are part of the factors that keep computer
programming out of the general education foundation of high

school curricula.

Another negative factor is the high complexity of teaching
introductory programming [2]. The heavy syntax and technology
overhead (e.g. text editors and compilers) can also lead to an
undesirable mix of delayed gratification and technophobic
anxiety. To address these complexity issues, a large number of
educational tools (e.g. [3][10][11]) has been developed.
However, many of these tools are still aimed at full-semester,
university-level courses.

A university’s introductory programming course can arguably be
taught in high school (e.g. Advanced Placement), but this will not
necessarily increase the number of students that will be exposed to
computer programming. Further, since prior programming
experience is a key indicator of future programming success
[1][6] (and interest?), there is still cause to push the introduction
of programming earlier and deeper into the high school
curriculum. Ideally, computer programming could become a
standard general science topic (like the periodic table, the
scientific method, plant biology, etc) presented to all high school
students.

To the same extent that the periodic table is not all of chemistry,
the first introduction of programming does not have to be
complete – just self-contained. An easily self-contained module
(and that which speaks best to the concept of processes) is the
design and development of algorithms. When teaching/learning
algorithms, a useful visualization and design tool to use before
coding is the flowchart. The following tool allows flowcharts to
be taught as a self-contained module without the need to discuss
code, compilers, or any other complexity.

The “Iconic Programmer” is an interactive tool that allows
programs to be developed in the form of flowcharts through a
graphical and menu-based interface. When complete (or at any
point during development), the flowchart programs can be
executed by stepping through the flowchart components one at a
time. Each of these components represents a sequence, a branch,
or a loop, so their execution is a completely accurate depiction of
how a structured program operates. To solidify the concept that
flowcharts are real programs, the developed flowcharts can also
be converted into Java or Turing (present capability), or and other
high-level language (easily extendable).

2. ICONIC PROGRAMMING
The key to making programming more accessible is to simplify it
as much as possible without losing its essence. From the
perspective of understanding processes [4], the essence of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006 …$5.00.

programming is algorithm development which can be simplified
to the three structures of sequence, branching, and looping. Each
of these structures can be represented by a flowchart icon (see
figure 1). Iconic programming will then be performed by
assembling these flowchart components into a program.

In assembling these components, it is clear that branching will
allow decision making and that looping will allow repetition.
However, it is less clear what sequence can represent. In order to
simplify programming as much as possible (and to allow the
emphasis to be placed on the process control concepts of
branching and looping), sequence icons are restricted to three
actions: declare a variable, make a variable assignment, and
produce output (see figure 2). (In the current implementation,
these actions refer primarily to integer variables, but LEGO robot
commands may represent a worthwhile extension in the future.)

Declaration allows new (int) variables to be created and output
allows them (or text) to be displayed to the user. In between,
assignment allows variables to receive and update their values.
Again, there are three options for assignment: a random value, the
result of a mathematical expression, and user input (see figure 3).
The mathematical expression is built using pull-down menus, so
no coding or syntax is required (see figure 4).

With the above actions and options for sequence, there is enough
functionality to develop complete programs for interesting, real-
world situations. For example, a simple activity may involve
trying to guess another person’s number that is between 1 and 10.
Although simple to do in live action, the ability to translate these
instinctive actions into a formal algorithm is not trivial for novice
programmers. The Iconic Programmer isolates this essential
aspect of programming and allows it to be taught through an
intuitive and visually appealing graphic interface.

3. LESSON 1: THE COMPONENTS
The three components of structured programming are sequence,
branching, and looping. Basically, a computer can perform an
action, make a decision about which action to perform, or repeat
an action. Each of these component pieces can be discussed in
the context of the number guessing activity.

The actions for the Iconic Programmer are the input, output, and
assignment of integer variables. Therefore, the initial number can
be input or assigned randomly, and guesses can be input as well.
However, with only sequence actions, there can be no feedback or
interactivity. Since, it’s no fun to guess someone’s number if they
don’t respond to your guess, some decision making ability is
clearly required by a computer.

A decision is a choice between two states – the number was
guessed, or the number was not guessed. The ability to make such
a decision depends on a Boolean expression that is composed of
relational comparisons (see figure 5). After the decision, the
branching structure allows two paths with different actions to be
taken. The program can now interact with a user and provide
feedback on their guesses. However, if you have three guesses,
what happens when you are right on your first guess?

Figure 1. Icons for sequence, branching, and looping.

Figure 4. Building mathematical expressions.

Figure 3. Assignment options.

Figure 2. Sequence options.

The final component allows repetition. Based on a decision, a
path that loops “backwards” to return to the decision can be
followed. For example, a simple strategy of guessing from 1 to 10
consecutively until the number is found can be implemented. In a
CS101I style course [2] that uses the Iconic Programmer as a
supplemental tool, control structures and Boolean decisions can
be presented in about 1 week (3 lecture hours). With the

elimination of the time required for syntax and other details, it is
conceivable that the above concepts could also be presented in
about 1 week to a general population of high school students.

4. LESSON 2: A COMPLETE PROGRAM
The number guessing activity can be expanded into a situation
suitable for a complete program. Specifically, after each guess,
the computer could respond “higher” if the guess is too low or
“lower” if the guess is too high. The above problem now
encompasses all three structures of sequence, branching, and
looping.

The students can be led through the algorithm design tasks by
asking leading questions (e.g. [8]). What structure do you need to
take multiple guesses? What structure do you need to choose a
response? What structure do you need to output a response? The
answers to these questions can then be used to build and run an
actual program (see figure 6 and figure 7).

Rather than syntax and coding, the Iconic Programmer allows
students to focus on the design and development of algorithms.
However, unlike pseudocode [8] and other paper designs, these
algorithms provide real feedback and instant gratification through
their ability to be executed. The underlying processes to number
sequences (e.g. Fibonacci numbers), dice games (e.g. craps), user
interfaces (e.g. telephone banking), etc can now be effectively
explored during the second week of lectures.

5. LESSON 3: EXTENSIONS OR DETAILS
To ensure that students appreciate the legitimacy of the programs
that they can write with the Iconic Programmer, it is important to
demonstrate them in a second environment. At present, this
demonstration can be done by clicking the “Java” button, cutting
and pasting the generated code (see figure 8), and compiling this
code to execute with the Java Virtual Machine. In the future, a
LEGO robot option may be possible to demonstrate that sequence,
branching, and looping are the basic structures behind all
computing processes.

Figure 6. A complete program for number guessing.

Figure 5. Building Boolean expressions.

Figure 7. Running flowcharts.

at START token

variable myNumber declared

waiting for input value

5 received as input for myNumber

variable myGuess declared

waiting for input value

7 received as input for myGuess

myGuess is not equal to myNumber

enter loop

myNumber
 = 5

myGuess
 = 7

Conversely, the more subtle details of the previous lessons can be
handled in greater depth. For example, Boolean algebra, binary
numbers, and assembly language programming are all used in the
current CS101I course to put the concepts into context.
Regardless of the choice, these three lessons/weeks form a
complete, self-contained module that should be able to provide an
adequate introduction to computer programming for a high school
general science audience.

6. THE ICONIC PROGRAMMER IN
PRACTICE
The Iconic Programmer has been used as a supplemental tool in a
CS101I style course at York University (ITEC1620 Object-Based
Programming). This course makes heavy use of flowcharts as a
visualization tool to help students learn the concepts of control
structures and algorithm development. The Iconic Programmer is
used to demonstrate the equivalence between programming and
drawing flowcharts – the flowcharts are executed and/or
converted into code.

The Iconic Programmer is also being used in high school
computer programming courses at Dr. Norman Bethune Collegiate
Institute. The student response has been very enthusiastic.
Whereas drawing flowcharts on paper was a tedious and
“irrelevant” activity, the students can now see their purpose, and
they enjoy interacting with them. With this positive first
introduction, we hope to be able to move the tool beyond elective
programming courses and into required general science courses.

7. CONCLUSIONS
The Iconic Programmer is an introductory programming tool
designed primarily for use in a general (e.g. grade 9) high school
science course. It has been designed to help isolate the key
concepts (e.g. algorithm design) of programming away from the

less important details (e.g. syntax and coding). With this
isolation, it should become possible to make computer
programming a self-contained, three-week course module.
Classroom success in university and high school introductory
programming courses suggests that this objective is achievable.

8. REFERENCES
[1] Cantwell Wilson, B., and Shrock, S. Contributing to Success

in an Introductory Computer Science Course: A Study of
Twelve Factors. In Proceedings of the Thirty-second
SIGCSE Technical Symposium on Computer Science
Education (2001), ACM Press.

[2] Computing Curricula 2001: Computer Science, December
2001. Online [September 1, 2002]. Available at
http://www.acm.org/education/curricula.html.

[3] Cooper, S., Dann, W., and Pausch, R. Teaching Objects-first
in Introductory Computer Science. In Proceedings of the
Thirty-fourth SIGCSE Technical Symposium on Computer
Science Education (2003), ACM Press.

[4] Greenberger, M. Computers and the World of the Future.
Transcribed recordings of lectures held at the Sloan School
of Business Administration, April, 1961. MIT Press.

[5] Guzdial, M., and Forte, A. Design Process for a Non-majors
Computing Course. To appear in Proceedings of the Thirty-
sixth SIGCSE Technical Symposium on Computer Science
Education (2005), ACM Press.

[6] Hagan, D., and Markham, S. Does it Help to Have some
Programming Experience before Beginning a Computing
Degree Program? In Proceedings of the Fifth annual
SIGCSE/SIGCUE Conference on Innovation and Technology
in Computer Science Education, ACM Press.

[7] Hermann, N. Popyack, J., Char, B., Zoski, P., Cera, C., and
Lass, R.N. Redesigning Computer Programming using
Multi-level Online Modules for Mixed Audience. In
Proceedings of the Thirty-fourth SIGCSE Technical
Symposium on Computer Science Education (2003), ACM
Press.

[8] Lane, H.C., and VanLehn, K. Coached Program Planning:
Dialogue-Based Support for Novice Program Design. In
Proceedings of the Thirty-fourth SIGCSE Technical
Symposium on Computer Science Education (2003), ACM
Press.

[9] Nagappan, N., William, L., Ferzil, M., Wiebe, E., Yang, K.,
Miller, C., and Balik, S. Improving the CS1 Experience with
Pair Programming. In Proceedings of the Thirty-fourth
SIGCSE Technical Symposium on Computer Science
Education (2003), ACM Press.

[10] Pattis, R., Roberts, J., and Stehlik, M. Karel the robot: a
gentle introduction to the art of programming, 2nd Edition
(1994), John Wiley & Sons.

[11] Sanders, D., and Dorn, B. Jeroo: A Tool for Introducing
Object-Oriented Programming. In Proceedings of the Thirty-
fourth SIGCSE Technical Symposium on Computer Science
Education (2003), ACM Press.

Figure 8. The number guessing flowchart in Java.

