Iconic Programming for

Stephen Chen
Information Technology Program
York University
4700 Keele Street
Toronto, Ontario

sychen@yorku.ca

ABSTRACT

One of the largest barriers to learning programnignipe precise
and complex syntax required to write programs. sHdrrier is a
key impediment to the integration of programmintpithe core
curriculum of general high school science courselere is not
enough time to learn both syntax and programming ithree-
week course module. The newly developed “IconmgPammer”
allows executable programs to be written throughuseoclicks
and menus, includes symbol by symbol translatiaa Java and
Turing, and comes complete with a three-week lesptam

suitable to new programmers. To date, the new hasl been
used effectively with full-semester, introductoryogramming
courses at both the university and high schoollleve

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Human Factors

Keywords
CSO0, CS1, high school programming, non-majors, alization
tools

1. INTRODUCTION

The increasing pervasiveness of computers in modeciety is
raising the status of computer programming towaheslevel of
being a core topic for any general education pmgrdhis rising
status supports Alan Perlis’ belief that any geheliberal
education would benefit from a foundation that irig#ls computer
programming since programming involves the concet
processes [4]. Unfortunately, traditional introthrg
programming courses at the university level havenausly high
attrition rates [7][9] and discouragingly low norgjor appeal [5].
These negative features are part of the factotskéep computer
programming out of the general education foundatidrhigh

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without fesiged that copies
are not made or distributed for profit or commdreidvantage and that
copies bear this notice and the full citation os finst page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

ITICSE'05 June 27-29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006 ...$5.00.

Flowcharts, Java, Turing, etc

Stephen Morris
Computer Science Department
Dr. Norman Bethune Collegiate Institute
200 Fundy Bay Blvd
Scarborough, Ontario

stevemorris@rogers.com

school curricula.

Another negative factor is the high complexity afac¢hing
introductory programming [2]. The heavy syntax aachnology
overhead (e.g. text editors and compilers) can &ad to an
undesirable mix of delayed gratification and teghtmabic
anxiety. To address these complexity issues, gelaumber of
educational tools (e.g. [3][10][11]) has been deped.
However, many of these tools are still aimed at-damester,
university-level courses.

A university’s introductory programming course canguably be
taught in high school (e.g. Advanced Placement)ttig will not

necessarily increase the number of students thidbevexposed to
computer programming. Further, since prior progrémg

experience is a key indicator of future programmsgccess
[1][6] (and interest?), there is still cause to Iptise introduction
of programming earlier and deeper into the high osth
curriculum. Ideally, computer programming couldcbee a
standard general science topic (like the periodiblet, the
scientific method, plant biology, etc) presentedlichigh school
students.

To the same extent that the periodic table is Haifachemistry,

the first introduction of programming does not hate be

complete — just self-contained. An easily selftaimed module
(and that which speaks best to the concept of pses} is the
design and development of algorithms. When teagl@iarning

algorithms, a useful visualization and design toluse before
coding is the flowchart. The following tool allovlewcharts to
be taught as a self-contained module without thexirte discuss
code, compilers, or any other complexity.

The “lconic Programmer” is an interactive tool thallows
programs to be developed in the form of flowchah®ugh a
graphical and menu-based interface. When comtetat any
point during development), the flowchart programan cbe
executed by stepping through the flowchart comptmene at a
time. Each of these components represents a segjugioranch,
or a loop, so their execution is a completely aaudepiction of
how a structured program operates. To solidifydbecept that
flowcharts are real programs, the developed flowishean also
be converted into Java or Turing (present capghilitr and other
high-level language (easily extendable).

2. ICONIC PROGRAMMING

The key to making programming more accessible sirtplify it
as much as possible without losing its essenceomFthe
perspective of understanding processes [4], thesness of

|
%
Figure 1. Iconsfor sequence, branching, and looping.

programming is algorithm development which can imepkfied

to the three structures of sequence, branching)aoping. Each
of these structures can be represented by a flawaten (see
figure 1). Iconic programming will then be perfah by
assembling these flowchart components into a progra

In assembling these components, it is clear thandting will
allow decision making and that looping will allovepetition.
However, it is less clear what sequence can represe order to
simplify programming as much as possible (and towalthe
emphasis to be placed on the process control ctscep
branching and looping), sequence icons are restritd three
actions: declare a variable, make a variable aswgh and
produce output (see figure 2). (In the currentlengentation,
these actions refer primarily to integer variablas LEGO robot
commands may represent a worthwhile extensiondrture.)

e Sequence Options @

" Assign

O Qutput

Cancel

Figure 2. Sequence options.

Declaration allows new (int) variables to be crdaded output
allows them (or text) to be displayed to the usém. between,
assignment allows variables to receive and updae walues.
Again, there are three options for assignmentndom value, the
result of a mathematical expression, and user i(gré figure 3).
The mathematical expression is built using pull-dawenus, so
no coding or syntax is required (see figure 4).

e

Cancel

Figure 3. Assignment options.

£ Expression Builder

Set Variable 1

L J[ES

|number1

Will Become

Set Variable 2 Inumbert =
Value Entry 2 |
Operator List 1 |Add =
Set Variable 3 number?
Value Entry 3 |
Operator List 2 |selectan operatar -
Set Variable 4 | =]
Value Entry 4 |
Expression
|
]2 Change Cancel ||

Figure 4. Building mathematical expressions.

With the above actions and options for sequeneetts enough
functionality to develop complete programs for iesting, real-
world situations. For example, a simple activitayminvolve
trying to guess another person’s number that ivéoet 1 and 10.
Although simple to do in live action, the ability translate these
instinctive actions into a formal algorithm is rtavial for novice
programmers. The Iconic Programmer isolates tlsisergial
aspect of programming and allows it to be taughoubgh an
intuitive and visually appealing graphic interface.

3. LESSON 1: THE COMPONENTS

The three components of structured programmingsatpience,
branching, and looping. Basically, a computer panform an
action, make a decision about which action to perfor repeat
an action. Each of these component pieces cariseassed in
the context of the number guessing activity.

The actions for the Iconic Programmer are the inputput, and
assignment of integer variables. Therefore, titimumber can
be input or assigned randomly, and guesses canplog as well.
However, with only sequence actions, there candfe@dback or
interactivity. Since, it's no fun to guess someésmaimber if they
don’t respond to your guess, some decision makimitityais
clearly required by a computer.

A decision is a choice between two states — the beurmvas

guessed, or the number was not guessed. Theydbilitake such
a decision depends on a Boolean expression thainmposed of
relational comparisons (see figure 5). After thexidion, the
branching structure allows two paths with differastions to be
taken. The program can now interact with a usel provide

feedback on their guesses. However, if you haveetlguesses,
what happens when you are right on your first geiess

% Condition Builder]
Variable 1 |ryGuess |
Relational Operator 1 [niot equals -
Variable 2 rrylurmber
Value Entry 2 |
Boolean Operator |select an operator |
Variable 3 | =]
Relational Operator2 | =]
Variable 4 | =l
Value Entry 4 |
Expression

Ok Cancel

Figure 5. Building Boolean expressions.

The final component allows repetition. Based odeaision, a
path that loops “backwards” to return to the deciscan be
followed. For example, a simple strategy of gugs&iom 1 to 10
consecutively until the number is found can be en@nted. In a
CS101 style course [2] that uses the Iconic Programneaa
supplemental tool, control structures and Booleeaqisions can

be presented in about 1 week (3 lecture hours).th \ihe
[BE

£ Codeless Programmer

Run

English

Java

Turing

Figure 6. A complete program for number guessing.

elimination of the time required for syntax andestldetails, it is
conceivable that the above concepts could alsoresepted in
about 1 week to a general population of high scetalents.

4. LESSON 2: A COMPLETE PROGRAM

The number guessing activity can be expanded ingituation

suitable for a complete program. Specificallyeaftach guess,
the computer could respond “higher” if the guess$os low or

“lower” if the guess is too high. The above problenow

encompasses all three structures of sequence, Himgnhcand

looping.

The students can be led through the algorithm detigks by
asking leading questions (e.g. [8]). What struzin you need to
take multiple guesses? What structure do you neeathoose a
response? What structure do you need to outpegmonse? The
answers to these questions can then be used t dmadl run an
actual program (see figure 6 and figure 7).

£ Run Panel

Program Actions “ariables
at START token myNumber
variable myNumber declared =5
waiting for input value myGuess
5 received as input for myNumber =/
variable myGuess declared
waiting for input value
7 received as input for myGuess
myGuess is not equal to myNumber
enter loop

Run | Slow | Step | Pause | Quit |

Figure 7. Running flowcharts.

Rather than syntax and coding, the Iconic Programafiews

students to focus on the design and developmeatgofrithms.

However, unlike pseudocode [8] and other papergdssithese
algorithms provide real feedback and instant geatifon through

their ability to be executed. The underlying pssees to number
sequences (e.g. Fibonacci numbers), dice gamescfas), user
interfaces (e.g. telephone banking), etc can noweffectively

explored during the second week of lectures.

5. LESSON 3: EXTENSIONSOR DETAILS
To ensure that students appreciate the legitimétlyeoprograms
that they can write with the Iconic Programmeisitmportant to
demonstrate them in a second environment. At ptegais
demonstration can be done by clicking the “Javatdmy cutting
and pasting the generated code (see figure 8)camgpiling this
code to execute with the Java Virtual Machine. the future, a
LEGO robot option may be possible to demonstraegshquence,
branching, and looping are the basic structuresindelall
computing processes.

public static void main (Stringl args) "~
{

int myrMumhber;

myklumber = Keyboard.readint);

int myGuess,

myEuess = Keyboard.readint;

while (myGuess = mykumber)

if{myGuess = myNumber)
{

System.out printing’ Lower™);

i
else

{
Systerm.out.printind"Higher";

¥

myGuess = Kevhoard.readintd;
'

Systern.out printin{™ou guessed my number"y;

Clase

Figure 8. The number guessing flowchart in Java.

Conversely, the more subtle details of the previeasons can be
handled in greater depth. For example, Booleaaba#y binary
numbers, and assembly language programming atsedl in the

current CS101 course to put the concepts into context.

Regardless of the choice, these three lessons/weeks a
complete, self-contained module that should be &bfgovide an
adequate introduction to computer programming fobigh school
general science audience.

6. THEICONIC PROGRAMMER IN
PRACTICE

The Iconic Programmer has been used as a suppknieoitin a
CS101 style course at York University (ITEC1620 Objecs®d
Programming). This course makes heavy use of fhawns as a
visualization tool to help students learn the c@tsef control
structures and algorithm development. The IcomagRammer is
used to demonstrate the equivalence between pragragmand
drawing flowcharts — the flowcharts are executedd/@n
converted into code.

The Iconic Programmer is also being used in highost
computer programming courses at Dr. Norman Betloikegiate
Institute. The student response has been veryusiastic.
Whereas drawing flowcharts on paper was a tediond a
“irrelevant” activity, the students can now seeirthparpose, and
they enjoy interacting with them. With this positi first
introduction, we hope to be able to move the t@gldnd elective
programming courses and into required general seieourses.

7. CONCLUSIONS

The Iconic Programmer is an introductory prograngmiool
designed primarily for use in a general (e.g. gradhigh school
science course. It has been designed to helptesdfee key
concepts (e.g. algorithm design) of programmingyafwam the

less important details (e.g. syntax and coding). ithWhis
isolation, it should become possible to make comput
programming a self-contained, three-week course uteod
Classroom success in university and high schoabdhictory
programming courses suggests that this objectiaehigevable.

8. REFERENCES

[1] Cantwell Wilson, B., and Shrock, S. ContributingSiaccess
in an Introductory Computer Science Course: A Stfdy
Twelve Factors. IfProceedings of the Thirty-second
SIGCSE Technical Symposium on Computer Science
Education(2001), ACM Press.

[2] Computing Curricula 2001: Computer ScienBecember
2001. Online [September 1, 2002]. Available at
http://www.acm.org/education/curricula.html.

[3] Cooper, S., Dann, W., and Pausch, R. Teaching @biiest
in Introductory Computer Science. Rroceedings of the
Thirty-fourth SIGCSE Technical Symposium on Conmpute
Science Educatio(2003), ACM Press.

[4] Greenberger, MComputers and the World of the Future
Transcribed recordings of lectures held at thers®ehool
of Business Administration, April, 1961. MIT Press.

[5] Guzdial, M., and Forte, A. Design Process for a{t@jors
Computing Course. To appearfnoceedings of the Thirty-
sixth SIGCSE Technical Symposium on Computer Scienc
Education(2005), ACM Press.

[6] Hagan, D., and Markham, S. Does it Help to Haveesom
Programming Experience before Beginning a Computing
Degree Program? IRroceedings of the Fifth annual
SIGCSE/SIGCUE Conference on Innovation and Teclgyolo
in Computer Science EducatiohCM Press.

[7] Hermann, N. Popyack, J., Char, B., Zoski, P., Céraand
Lass, R.N. Redesigning Computer Programming using
Multi-level Online Modules for Mixed Audience. In
Proceedings of the Thirty-fourth SIGCSE Technical
Symposium on Computer Science Educa@®93), ACM
Press.

[8] Lane, H.C., and VanLehn, K. Coached Program Plannin
Dialogue-Based Support for Novice Program Design. |
Proceedings of the Thirty-fourth SIGCSE Technical
Symposium on Computer Science Educg2093), ACM
Press.

[9] Nagappan, N., William, L., Ferzil, M., Wiebe, E.alxg, K.,
Miller, C., and Balik, S. Improving the CS1 Experie with
Pair Programming. IProceedings of the Thirty-fourth
SIGCSE Technical Symposium on Computer Science
Education(2003), ACM Press.

[10] Pattis, R., Roberts, J., and Stehlik, Karel the robot: a
gentle introduction to the art of programming® Edition
(1994), John Wiley & Sons.

[11] Sanders, D., and Dorn, B. Jeroo: A Tool for Intrcidg
Object-Oriented Programming. Rroceedings of the Thirty-
fourth SIGCSE Technical Symposium on Computer &eien
Education(2003), ACM Press.

