Mathematics 1190A Introduction to Sets and Logic Midterm Examination B

October 18, 2012

Instructions: Do all problems. Present your solutions in the accompanying booklet in the order that they appear on this paper. No notes, crib sheets or books are allowed. A calculator is allowed. Questions are of equal weight. The test is 50 minutes long.

1. (a) For $1 \leq i \leq \infty$, let A_{i} be a set. Describe using set notation what is meant by $\bigcap_{i=1}^{\infty} A_{i}$. see page 134. Or from your class notes you will see that $\bigcap_{i=1}^{\infty} A_{i}=\left\{x: \forall i \in \mathbb{Z}^{+}, x \in A_{i}\right\}$
(b) Let $f: A \rightarrow B$ be a function from a set A to a set B. Let S be a subset of B. Define the set $f^{-1}(S)$
problem 43 section 2.3 was assigned. To have done this problem it would have been necessary to read the text between problems 41 and 42 - where you can find the answer. Or from your class notes you can see $f^{-1}(S)=\{x \in A: f(x) \in S\}$.
(c) Define what it means for two sets to have the same cardinality.
see definition 1 p. 170
2. Determine the truth value of each of the following statements in which the domain of each variable is the real numbers. If false, provide a counter-example.see definition 1 p . 170
(a) $\forall x \exists y\left(x^{2}=y\right)$ true
(b) $\left.\exists x \forall y x^{2}=y\right)$ false - if $x \neq 0$ the statement says every y is a square. for the statement to be true If $x=0$ every y would have to be 0 for the statement to be true.
3. (a) What is the negation of the proposition $(p \wedge q) \rightarrow(q \rightarrow p)$. Form your answer in such a way that the negation symbol only the propositions p or q.

$$
(p \wedge q) \wedge(q \wedge \neg p) \equiv \mathbf{F}
$$

(b) Construct the truth table for the compound proposition above.

p	q	$p \wedge q$	$q \rightarrow p$	$(p \wedge q) \rightarrow(q \rightarrow p)$
T	T	T	T	T
T	F	F	T	T
F	T	F	F	T
F	F	F	T	T

4. For $i \in \mathbb{Z}^{+} A$, for $A_{i}=[i, \infty)$, namely the set $\{x \in \mathbb{R}: i \leq x\}$. Describe the sets $\bigcup_{i=1}^{\infty} A_{i}$ and $\bigcap_{i=1}^{\infty} A_{i}$.
$\bigcup_{i=1}^{\infty} A_{i}=[1, \infty)$
$\bigcap_{i=1}^{\infty} A_{i}=\emptyset$
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Find (see comment for problem 1)
(a) $f^{-1}(\{1\})$

$$
f^{-1}(\{1\})=\{-1,1\}
$$

(b) $f^{-1}(\{x: 4<x\})$
$f^{-1}(\{x: 4<x\})=(-\infty, 2) \bigcup(2, \infty)$
6. Prove that if $5 n+2$ is odd, then so is n.

Proof: Strategy - prove the contrapositive : Thus assume n is eve, say $n=2 k$. Thus $5 n+2=10 k+2=2(5 k+1)$. Thus $5 n+2$ is even. Done!

