Mathematics 1190A Introduction to Sets and Logic Midterm Examination A

October 18, 2012

Instructions: Do all problems. Present your solutions in the accompanying booklet in the order that they appear on this paper. No notes, crib sheets or books are allowed. A calculator is allowed. Questions are of equal weight. The test is 50 minutes long.

1. (a) For $1 \leq i \leq \infty$, let A_{i} be a set. Describe using set notation what is meant by $\bigcup_{i=1}^{\infty} A_{i}$. see page 134. Or from your class notes you will see that $\bigcup_{i=1}^{\infty} A_{i}=\left\{x: \exists i \in \mathbb{Z}^{+}, x \in A_{i}\right\}$
(b) Let $f: A \rightarrow B$ be a function from a set A to a set B. Let $y \in B$. Define the set $f^{-1}(y)$
problem 43 section 2.3 was assigned. To have done this problem it would have been necessary to read the text between problems 41 and 42 - where you can find the answer. Or from your class notes you can see $f^{-1}(S)=\{x \in A: f(x)=1\}$.
(c) Define what it means for a set to be countable.
see definition 3 p. 171
2. Determine the truth value of each of the following statements in which the domain of each variable is the real numbers. If false, provide a counter-example. see definition 1 p. 170
(a) $\forall x \exists y\left(x=y^{2}\right) \mathrm{F}$ - suppose $x=2$, there then is no integer y such that $y^{2}=2$.
(b) $\exists x \forall y\left(x=y^{2}\right) \mathrm{F}$ - says that no matter what x we pick, it must be a square.
3. (a) What is the negation of the proposition $(p \vee q) \rightarrow(q \rightarrow p)$. Form your answer
in such a way that the negation symbol modifies only the propositions p or q.

$$
(p \vee q) \wedge(q \wedge \neg p)
$$

(b) Construct the truth table for the compound proposition above.

p	q	$p \vee q$	$q \rightarrow p$	$(p \vee q) \rightarrow(q \rightarrow p)$
T	T	T	T	T
T	F	T	T	T
F	T	T	F	F
F	F	F	T	T

4. For $i \in \mathbb{Z}^{+} A$, for $A_{i}=(0, i)$, namely the set $\left.\{x \in \mathbb{R}: 0<x<i)\right\}$. Describe the sets $\bigcup_{i=1}^{\infty} A_{i}$ and $\bigcap_{i=1}^{\infty} A_{i}$.
$\bigcup_{i=1}^{\infty} A_{i}=(0, \infty)$
$\bigcap_{i=1}^{\infty} A_{i}=(0,1)=A_{1}$
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Find (see comment for problem 1)
(a) $f^{-1}(\{1\}) f^{-1}(\{1\})=\{-1,1\}$
(b) $f^{-1}(\{x: 0<x<1\})$

Note $\{x: 0<x<1\}$ is the open interval $(0,1)$. Then $f^{-1}((0,1))=(-1,0) \bigcup(0,1)$
6. Prove that if $3 n+2$ is odd, then so is n.

Proof: Strategy - prove the contrapositive : Thus assume n is even - say $n=2 k$. Thus $3 n+2=6 k+2=2(3 k+1)$. Thus $3 n+2$ is even. Done!

