Mathematics 1190B Introduction to Sets and Logic Second Midterm Examination A

November 23, 2012

Instructions: Do all problems. Present your solutions in the accompanying booklet in the order that they appear on this paper. No notes, crib sheets or books are allowed. A calculator is allowed. The test is $\mathbf{5 0}$ minutes long.

1. (10 pts) Given a function $f: A \rightarrow B$ from a set A to a set B state precisely, using the language of logic, (1) what it means for f to be surjective and (2) what it means for f not to be surjective - but in such a way that the negation symbol immediately modifies only a proposition or a predicate.

This question was on the first exam. However, recalling the both definitions of injective and surjective :

$$
\begin{gathered}
f \text { is surjective } \Longleftrightarrow \forall y \in B \exists x \in A \text { such that } f(x)=y \\
f \text { is not surjective } \Longleftrightarrow \exists y \in B \text { such that } \forall x \in A, f(x) \neq y \\
f \text { is injective } \Longleftrightarrow \forall x_{1} \in A \wedge \forall x_{2} \in A,\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \\
f \text { is not injective } \Longleftrightarrow \exists x_{1} \in A \wedge \exists x_{2} \in A:\left(x_{1} \neq x_{2}\right) \wedge f\left(x_{1}\right)=f\left(x_{2}\right)
\end{gathered}
$$

2. (10 pts) For the following state in full and complete detail
(a) Bézout's Therorem
(b) The Fundamental Theorem of Arithmetic
3. (12 pts) Perform the following conversions
(a) decimal 321 to binary

$$
321=256+65+1=2^{8}+2^{6}+1=(101000001)_{2}
$$

(b) hexidecimal $D 8 F_{H}$ to decimal

$$
D 8 F_{H}=(13) 16^{2}+(8) 16+15=3316+128+15=3469
$$

(c) binary $(11011)_{2}$ to decimal

$$
11011=2^{4}+2^{3}+2+1=27
$$

4. (10 pts) Find the least positive integer a such that $a \equiv 42(\bmod 31)$.

Note, we must have $a=42+31 k$ for some constant k. With $k=-1$, we have $a=11$.
5. (10 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$. What is the set $f^{-1}([1,2])$.
Similar to problem 42(c) Section 2.3, examining the graph of $f(x)=x^{2}$, it is obvious that $f^{-1}([1,2])=[-\sqrt{2},-1] \bigcup[1, \sqrt{2}]$.
6. (8 pts) Using the method of the Chinese Remainder Theorem find the the smallest positive integer that is a simultaneous solution to the set of congruence relations

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 4(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

This is very similar to example 5 page 278 which was treated in detail during class. It is so similar that the values $y_{1}=2, y_{2}=1, y_{3}=1$ are the same. With $M_{1}=35, M_{2}=21$, and $M_{3}=15$, and $m=3 \cdot 5 \cdot 7=105$, a solution is then any integer x such that

$$
x \equiv 1 \cdot 35 \cdot 2+4 \cdot 21 \cdot 1+2 \cdot 15 \cdot 1(\bmod 105)
$$

or equivalently

$$
x \equiv 184(\bmod 105)
$$

Any such solution must satisfy $x=184+k 105$ for some $k \in \mathbb{Z}^{+}$. With $k=1$, we see the least such positive solution is $x=79$.

