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Abstract Next location prediction is of great importance for many location-based applications. With the virtue of solid

theoretical foundations, Markov-based approaches have gained success along this direction. In this paper, we seek to enhance

the prediction performance by understanding the similarity between objects. In particular, we propose a novel method, called

weighted Markov model (weighted-MM), which exploits both the sequence of just-passed locations and the object similarity

in mining the mobility patterns. To this end, we first train a Markov model for each object with its own trajectory records,

and then quantify the similarities between different objects from two aspects: spatial locality similarity and trajectory

similarity. Finally, we incorporate the object similarity into the Markov model by considering the similarity as the weight of

the probability of reaching each possible next location, and return the top-rankings as results. We have conducted extensive

experiments on a real dataset, and the results demonstrate significant improvements in prediction accuracy over existing

solutions.
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1 Introduction

In recent years, location-based social networks (e.g.,

Foursquare, Gowalla) have been growing rapidly and

users like to post their physical locations in the form

of “check-in”. A set of check-ins can be regarded as

a trajectory because each check-in has a location tag

and a time-stamp, corresponding to where and when

the check-in is made respectively. Moreover, with the

widespread use of positioning technology and the in-

creasing deployment of surveillance infrastructures, it

is increasingly possible to track the movement of people

and other objects (e.g., vehicles). Both types of trajec-

tory data contain three main attributes: the object, the

location and the time-stamp. The availability of such

trajectory data in large volume has a strong impact

on a wide spectrum of applications such as trajectory

search[1], trajectory reduction[2], urban computing[3]

and location-based recommendation[4].

One of the fundamental problems in trajectory min-

ing is to predict the next location of a moving object.

Next location prediction is of great value to both users

and the owners of trajectory datasets. For example,

once knowing the next locations that users intend to

visit, we may optimize marketing strategies accordingly

by pushing promotions to those in the predicted area.

In addition, such knowledge may also assist in forecast-

ing traffic conditions and routing the drivers so as to

alleviate traffic jams.

As Markov-based methods have performed well in

the task of next location prediction[5-7], in this paper,

we aim to further enhance the model by considering

important factors that have been neglected in previous

studies. Xue et al.[5] used a Markov model to mine

individual mobility patterns for each object based on

its own historical trajectories to predict next location.
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However, the prediction based on individual patterns

tends to suffer from data sparsity in many cases, e.g.,

social check-in and traffic surveillance, where an object

only has a small number of past trajectories available,

and meaningful moving patterns thus cannot be mined.

Chen et al.[6-7] proposed variable-order Markov mod-

els to consider collective patterns of all available tra-

jectories in making predictions. For example, assume

that objects living in the same apartment produce a

set of trajectory records as shown in Fig.1, where li

(i = 1, . . . , 9) indicate different locations, and each line

represents a separate trajectory Tj (j = 1, . . . , 4). In

this example, we have object 1: T1 = (l1, l4, l5, l8, l9),

object 2: T2 = (l1, l2, l5, l6), object 3: T3 = (l1, l4, l5, l8),

object 4: T4 = (l1, l2, l5). Given a user arriving at

l5, the aforementioned method will take l8 as the next

move, as two out of three trajectories have sequentially

passed the two locations in the history. That is, as long

as the current location is identical, the method will pre-

dict the same next location for all the objects.

Fig.1. Example of next location prediction.

However, this can be problematic in many cases as

it fails to consider the unique characteristics of each

object. People’s mobility patterns tend to be driven

by their intrinsic habits, and different people may have

their own travel preferences. As shown in Fig.1, the

trajectories of object 2 and object 4 are more similar

to each other, as they both share the same sequence

(l1, l2, l5). Therefore, to make a prediction for object 4,

previous behaviors of object 2 can be more helpful. In

consequence, given object 4 at l5, location l6 (instead of

location l8) will be selected, as object 2 had a visit at l6
before. To make a better prediction, it is therefore nec-

essary to give proper consideration to the similarities

between objects and quantify them when mining the

mobility patterns.

In this paper, we propose a weighted Markov model

(weighted-MM) that considers both the sequence of

just-passed locations and the object similarity in mining

the mobility patterns. Weighted-MM consists of two

components: 1) training an individual Markov model

for each object with its own trajectories; 2) computing

the similarity between any two objects. Further, we

propose two methods to measure the object similarity.

One is to use the spatial locality similarity based on the

assumption that similar objects are more likely to have

similar neighborhood, and the other is to calculate an

overall trajectory similarity, where a weighted average

of all possible similarities between trajectories of the

two objects is taken. When making predictions, given

the sequence of locations that object o has just passed

by, we first find the similar objects of o and quantify the

similarities, and then obtain the probability of reaching

each possible next location with the individual model

of each similar object. Finally, we take the similarity

as the weight of the probability of reaching each possi-

ble next location, and return the top ranking results as

outputs.

We present experimental results on a real dataset

consisting of the vehicle passage records over a period

of 31 days in a metropolitan city. The experimental re-

sults confirm the superiority of the proposed methods

over existing methods.

The contributions of this paper can be summarized

as follows.

• We present weighted-MM, a weighted Markov

model that considers both the sequence of just-passed

locations and the object similarity in predicting next lo-

cations. Specifically, we measure the similarity between

any two objects and obtain the probability of reaching

each possible next location with the individual Markov

models for each object; then we regard the similarity as

the weight of the probability and return the top-ranked

ones as answers in the task of next location prediction.

•We propose two methods to measure the similarity

between two objects from the perspective of spatial lo-

cality similarity and trajectory similarity respectively.

One is to represent the spatial locality of an object

with the frequency distribution over global locations,

and measure the object similarity using the Kullback-

Leibler divergence; the other is to estimate the simila-

rity between two objects in terms of a weighted average

of all possible similarities in trajectories that belong to

them.



Meng Chen et al.: Mining Object Similarity for Predicting Next Locations 651

• We conduct extensive experiments with real-world

traffic data to investigate the effectiveness of the pro-

posed models, showing remarkable improvement as

compared with baselines in predicting next locations.

The rest of the paper is organized as follows. We

review the related work in Section 2, and give the pre-

liminaries of our work in Section 3. In Section 4, we

introduce the Markov model for next location predic-

tion. In Section 5, we incorporate the object similarity

into the Markov model to generate a weighted Markov

model. We present the experimental results and the

performance analysis in Section 6, and conclude this

paper in Section 7.

2 Related Work

2.1 Next Location Prediction

Prediction with Individual Patterns. There exist an

array of studies that use individual histories to pre-

dict the next locations, and we focus on methods with

Markov-based solutions[5,8-9]. Xue et al.[5] used taxi

traces to construct a Probabilistic Suffix Tree and pre-

dicted short-term routes with Variable-Order Markov

models. Simmons et al.[8] built a hidden Markov model

(HMM) for every driver, which predicts the future des-

tination and route of each target. Liao et al.[9] intro-

duced a hierarchical Markov model that infers a user’s

daily movements through an urban community. All

these studies focus on predicting the destinations of spe-

cific individuals based on their own habits and histori-

cal trajectories. However, such methods will not work

properly while a new user arrives or his/her trajectory

history cannot be located.

Prediction with Collective Patterns. Mining the mo-

bility patterns with historical movements of all the mov-

ing objects has been widely investigated[10-12]. Mon-

reale et al.[10] built a T-pattern tree with all the tra-

jectories to make future location predictions. Morzy[11]

used all the moving objects’ locations to discover fre-

quent trajectories and movement rules with the Pre-

fixSpan algorithm. Xue et al.[12] decomposed historical

trajectories into sub-trajectories, connected the sub-

trajectories into “synthesised” trajectories, and then

predicted the destination with a Markov model. Be-

sides, Chen et al.[6] trained an integrated Markov model

with different trajectory sets to mine both individual

and collective movement patterns to predict next loca-

tions. However, the above methods based on collective

patterns make predictions at too coarse a granularity.

Prediction with External Information. Pushing

further from the historical trajectories, there are

studies[13-16] that focus on dynamic environments and

improve prediction performance with external informa-

tion (e.g., semantic features, driving speed and direc-

tion, expert knowledge). Zhou et al.[3] extracted a

small set of reference trajectories for each target tra-

jectory and trained a local model for prediction. Ye

et al.[14] first discriminated the category of user acti-

vities with a hidden Markov model and then calculated

the most likely locations given the estimated category

distribution. Pan et al.[15] incorporated the historical

traffic data with the real-time event, and proposed H-

ARIMA+ to predict the traffic in the presence of inci-

dents. Zhang et al.[16] extracted the underlying correla-

tion between human mobility patterns and cellular call

patterns and used it for the location prediction from

temporal and spatial perspectives. However, as such

external knowledge is not always available, the above

methods can only be applied to some specific applica-

tions. Without loss of generality, in this paper, we aim

to solve the next location prediction problem with tra-

jectory data containing three main attributes, namely,

object, location, and time-stamp.

In summary, none of the above studies investigate

object similarity in mining mobility patterns. To the

best of our knowledge, it is the first time to exploit

both the sequence of just-passed locations and the ob-

ject similarity in predicting next locations.

2.2 POI Recommendation

Some recent studies on POI recommendation in

location-based social networks are also related to our

work[17-18], in which any unvisited POIs can be rec-

ommended to users. Ye et al.[17] proposed an unified

POI recommendation framework based on user-based

CF to incorporate user preference, social influence, and

geographical influence to compute the recommendation

score of a candidate POI. Yuan et al.[18] attempted to

enhance the user-based CF by considering the temporal

information, and developed a collaborative time-aware

recommendation model to recommend locations where

users have not visited before.

The above methods are based on the user-based

collaborative filtering (CF) method, which is widely

adopted for recommender systems. Given a user, user-

based CF first measures the similarities between the

user and others, and then computes the recommenda-

tion score of a POI by taking a weighted combination of
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the other users’ check-in records on the POI. We imple-

mented the user-based CF method in [18] and applied

it for next location prediction, but it performed much

worse than Markov-based methods. One potential rea-

son is that user-based CF method makes predictions

without considering the just-passed locations. That is,

the method will always predict the identical next loca-

tion on the condition that the object is the same.

2.3 Trajectory Similarity

A trajectory consists of a time-ordered sequence of

locations, and is a kind of time series data. Researchers

have proposed a large volume of similarity measures to

cope with different lengths of trajectories. For example,

Vlachos et al.[19] first formalized non-metric similarity

functions based on the longest common subsequence

and then provided an intuitive notion of similarity be-

tween trajectories by giving more weight to the simi-

lar portions of the sequences. Dynamic time warping

(DTW) is a much more robust distance measure for

time series data. Keogh[20] proposed a novel technique

for the exact indexing of DTW. Chen et al.[21] intro-

duced a novel distance function, Edit Distance on Real

sequence (EDR), which was robust against noise, shifts

and scaling of trajectory data.

Furthermore, there are studies that try to obtain se-

mantic information from the trajectories to help mea-

sure trajectory similarities. For example, Ying et

al.[22] thought that trajectories which were geographi-

cally close might not be similar and thus introduced a

novel trajectory similarity measurement named Maxi-

mal Semantic Trajectory Pattern Similarity (MSTP-

Similarity), which measures the semantic similarity be-

tween trajectories. Velpula and Prasad[23] proposed

a multi-viewpoint similarity measure which considers

both the movement and the speed of the objects, along

with the semantic features for clustering trajectories.

However, the above methods are not suitable to com-

pute trajectory similarity in this paper, because the

semantic information is missing in our trajectory data.

3 Preliminaries

In this section, we first introduce some concepts

which are required for the subsequent discussion, and

then give an overview of the problem addressed in this

paper.

Definition 1 (Location). An object o passes

through a set of locations, where each location l is de-

fined as a point or a region where the position of o is

recorded.

Definition 2 (Trajectory). The trajectory T

is defined as a time-ordered sequence of locations:

(l1, l2, . . . , ln).

Definition 3 (Prefix Sequence). For a location li

and a given trajectory T = (l1, . . . , ln), its prefix se-

quence L
j
i refers to a length-j subsequence of T ending

with li.

Definition 4 (Candidate Next Locations). For lo-

cation li, we define location lj as a candidate next lo-

cation of li if an object can arrive at lj from li without

going through another location first.

The set of candidate next locations can be obtained

either by prior knowledge (e.g., locations of the surveil-

lance cameras combined with the road network graph),

or by the induction from historical trajectories of mov-

ing objects.

Given a trajectory sequence T = (l1, l2, . . . , ln), the

next location prediction problem is to predict the loca-

tion that the moving object will arrive at next. That

is, given T , to predict the next location ln+1.

4 Markov Modeling

AMarkov model is a stochastic model used to model

randomly changing systems, and it performs well for

prediction[6,24], thereby we also choose it to predict

next locations. A naive approach is to train a separate

Markov model for each object using its past trajecto-

ries. The Markov model regards the mobility patterns

of an individual as a discrete stochastic process. Specif-

ically, a state in the Markov model corresponds to a

location, and a state transition corresponds to moving

from one location to another.

Let T be an object’s trajectory of length n (i.e., it

contains n locations), and let p (ln+1|T ) be the proba-

bility that the object will arrive at location ln+1 next.

The location ln+1 is given by

ln+1 = argmax
l∈L

{p (ln+1 = l|T )}

= argmax
l∈L

{p (ln+1 = l|l1, l2, . . . , ln)} ,

where L is the set of all the locations. Essentially, this

approach for each location l computes its probability

of next visit, and selects the one that has the highest

possibility.

However, the probability of arriving at l actually

only depends on a small set of m preceding locations,

instead of all of them in the trajectory. It is clear that
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an object’s current location will shed more light on its

next move, and the most recent preceding steps will

have more impacts on the object’s future decisions than

those that have passed much earlier. Therefore, the lo-

cation ln+1 that the object will arrive at next can be

given by

ln+1 = argmax
l∈L

{

p
(

ln+1 = l|ln−(m−1), . . . , ln
)}

,

where m is the order of the Markov model.

In order to use the m-th order Markov model,

we learn ln+1 for each prefix sequence Lm
n =

(

ln−(m−1), . . . , ln−1, ln
)

containing m locations, by es-

timating the conditional probability p (ln+1 = l|Lm
n ).

The most commonly used method for estimating this

value is to use the maximum likelihood principle, and

the conditional probability p (li|L
m
n ) therefore can be

computed by

p (li|L
m
n ) =

♯(Lm
n , li)
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fij = f (i, j) ,

l∗
∑

j=1

fij = 1, (i = 1, 2, ..., o∗),

where o∗ is the number of objects and l∗ is the number

of sampling locations. fij stands for the global location

frequency of object i arriving at location j.

Given an object ou, we use an l∗-dimensional vector

Fu = (fu1, fu2, ..., ful∗) to represent its spatial locality,

where l∗ is the total number of sampling locations. We

measure the spatial locality similarity of two objects ou
and ov using the Kullback-Leibler divergence[26]:

Osimuv = 1−
1
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5.3 Next Location Prediction

In order to consider both the sequence of just-passed

locations and the object similarity in mining the mo-

bility patterns, we propose to incorporate the similar-

ity into the Markov model. Specifically, we quantify

the similarity between any two objects and obtain the

probability of reaching each possible next location with

the individual Markov models for each object; then we

regard the similarity as the weight of the probability

and return the top-ranked ones as answers.

Given a trajectory sequence of object ok, the loca-

tion ln+1 that it will arrive at next is given by

ln+1

=argmax
li∈L







∑

oj∈O

Osimkj × p (ln+1 = li|L
m
n , oj)







,

p (ln+1 = li|L
m
n , oj)

= argmax
li∈L

{

♯(Lm
n , li, Toj )
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30 134 vehicles in the first 27 days are used to train the

final models with the tuned parameters. Finally, we

use the remaining 4-day 104129 trajectories to formu-

late the test dataset.

To compare different Markov-basedmethods, we use

two evaluation metrics, namely, accuracy and average

precision. Accuracy is defined as the ratio of the num-

ber of trajectories for which the model is able to cor-

rectly predict to the total number of trajectories in the

test set. That is,

accuracy =
1
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the fact that most objects will be removed from the

candidate list given a high threshold.
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Fig.3. Effect of Markov order on accuracy and average preci-
sion. (a) Top-1 accuracy. (b) Top-5 accuracy. (c) Top-5 average
precision.

For weighted-MM(JS), weighted-MM(LCS) and

weighted-MM(DTW), we first rank the similarity val-

ues, and then pick up similar objects with a decreasing

order. We vary the number of similar objects from 100

to 5 000 to evaluate its effect, and report the results

in Fig.5. Note that the performance improves for all

three models as the number of similar objects increases.

Nonetheless, both average precision and accuracy gra-

dually decrease after a certain value, which might be

caused by introducing more noise with a larger amount

of similar objects. Besides, we notice that weighted-

MM(JS) achieves the best performance among three

methods. Therefore, we adopt weighted-MM(JS) for

the comparison with other alternative solutions.
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Fig.4. Effect of the threshold of similarity. (a) Top-1 accuracy.
(b) Top-5 accuracy. (c) Top-5 average precision.
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Fig.5. Effect of the number of similar objects. (a) Top-1 accu-
racy. (b) Top-5 accuracy. (c) Top-5 average precision.

6.3 Comparisons with Baselines

To evaluate the effectiveness of the proposed mod-

els, we compare against some start-of-the-art ap-

proaches including WhereNext[10], NLPMM[7] and

objectTra-MM[27]. WhereNext uses the previous move-

ments of all moving objects to make future location

predictions. NLPMM uses logistic regression to com-

bine the individual and the collective movement pat-

terns in making predictions. ObjectTra-MM consists

of two models: object-MM and tra-MM. Object-MM

first clusters similar objects based on their spatial lo-

calities, and then builds variable-order Markov models

with the trajectories of objects in the same cluster; tra-

MM clusters trajectories using a given similarity metric,

and trains a series of Markov models with trajectories

in each cluster. As they concentrate on different as-

pects of the movement patterns (object-MM considers

the object similarity and tra-MM considers the trajec-

tory similarity), they are integrated through logistic re-

gression to obtain objectTra-MM. Similarly, we also in-

tegrate weighted-MM(SL) and tra-MM to generate the

final predictor weightedTra-MM to obtain a better pre-

diction accuracy.

We first empirically obtain the optimal parameters

for these approaches in our dataset, and then apply

them in the comparison. For WhereNext, the support

for constructing T-pattern tree is 20. For NLPMM, the

Markov order is 2. For objectTra-MM, the cluster num-

ber in object-MM is 80, and the distance threshold in

tra-MM is 8. The threshold of similarity in weighted-

MM(SL) is 0.8.

We predict the top k next locations with all the

models, and demonstrate the performances in Fig.6.

We can see that: 1) Both accuracies and average pre-

cisions improve as k increases for all the models. 2)

WhereNext performs the worst, because it uses the

trajectories of all the objects to mine the collective

patterns and is coarse grained. NLPMM considers

both the individual patterns and the collective pat-

terns in making predictions, and it performs better

than WhereNext. 3) When predicting the top-1 next

location, object-MM performs better than WhereNext

and NLPMM, as it clusters similar objects and learns

fine grained patterns. The weakness of object-MM

is that it cannot discover collective patterns and per-

forms dissatisfactorily in predicting top-10 next loca-

tions, and this might be due to the fact that each clus-

ter only has a part of objects and all the objects in the

same cluster are treated equally. 4) Though weighted-

MM(SL) and object-MM organize the same informa-

tion, weighted-MM(SL) performs better than object-

MM, since it quantifies the spatial locality similarity

between any two objects and sets larger weights to the

more similar objects in mining the mobility patterns.

5) ObjectTra-MM considers both the object similarity

and the trajectory similarity in predicting next loca-

tions, and it performs better than weighted-MM(SL).

Further, as weighted-MM(SL) performs better than

object-MM, the integrated predictor weightedTra-MM

also outperforms objectTra-MM. It is worth mentioning
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that the top-10 accuracy of 0.89 is a significant improve-

ment as the average number of candidate next locations

is about 43 (meaning there are 43 possibilities).
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Fig.6. Performance comparison with baselines. (a) Accuracy.
(b) Average precision.

7 Conclusions

In this paper, we proposed a weighted Markov

model (weighted-MM) which enhances the Markov

model for next location prediction by quantifying the

similarities between objects. Weighted-MM consists of

two parts: 1) training an individual Markov model for

each object with its own trajectories; 2) quantifying the

similarity between two objects. We proposed two meth-

ods to measure the object similarity from the perspec-

tive of spatial locality similarity and trajectory simi-

larity respectively. We evaluated the proposed mod-

els using a real vehicle passage record dataset, and the

experiments showed that the proposed models signifi-

cantly outperform the state-of-the-art methods.
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