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Abstract: We establish limit theory for the Grenander estimator of a mono-

tone density near zero. In particular we consider the situation when the true

density f0 is unbounded at zero, with different rates of growth to infinity. In

the course of our study we develop new switching relations by use of tools

from convex analysis. The theory is applied to a problem involving mixtures.
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1. Introduction and Main Results

Let X1, . . . ,Xn be a sample from a decreasing density f0 on (0,∞), and let

f̂n denote the Grenander estimator (i.e. the maximum likelihood estimator) of

f0. Thus f̂n ≡ f̂L
n is the left derivative of the least concave majorant F̂n of the

empirical distribution function Fn; see e.g. Grenander (1956a,b), Groeneboom

(1985), and Devroye (1987, chapter 8).

The Grenander estimator f̂n is a uniformly consistent estimator of f0 on sets

bounded away from 0 if f0 is continuous:

sup
x≥c

|f̂n(x) − f0(x)| →a.s. 0

for each c > 0. It is also known that f̂n is consistent with respect to the L1 (‖p−

q‖1 ≡
∫
|p(x) − q(x)|dx) and Hellinger (h2(p, q) ≡ 2−1

∫ [√
p(x) −

√
q(x)

]2
dx)

metrics: that is,

‖f̂n − f0‖1 →a.s. 0 and h(f̂n, f0) →a.s. 0;

see e.g. Devroye (1987, Theorem 8.3, page 144) and van de Geer (1993).
1
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However, it is also known that f̂n(0) ≡ f̂n(0+) is an inconsistent esti-

mator of f0(0) ≡ f0(0+) = limxց0 f0(x), even when f0(0) < ∞. In fact,

Woodroofe and Sun (1993) showed that

f̂n(0) →d f0(0) sup
t>0

N(t)

t
d
= f0(0)

1

U
(1.1)

as n → ∞ where N is a standard Poisson process on [0,∞) and U ∼ Uniform(0, 1).

Woodroofe and Sun (1993) introduced penalized estimators f̃n of f0 which yield

consistency at 0: f̃n(0) →p f0(0). Kulikov and Lopuhaä (2006) study estimation

of f0(0) based on the Grenander estimator f̂n evaluated at points of the form t =

cn−γ . Among other things, they show that f̂n(n−1/3) →p f0(0) if |f ′
0(0+)| > 0.

Our view in this paper is that the inconsistency of f̂n(0) as an estimator of

f0(0) exhibited in (1.1) can be regarded as a simple consequence of the fact that

the class of all monotone decreasing densities on (0,∞) includes many densities

f which are unbounded at 0, so that f(0) = ∞, and the Grenander estimator

f̂n simply has difficulty deciding which is true, even when f0(0) < ∞. From this

perspective we would like to have answers to the following three questions under

some reasonable hypotheses concerning the growth of f0(x) as x ց 0:

Q1: How fast does f̂n(0) diverge as n → ∞?

Q2: Do the stochastic processes {bnf̂n(ant) : 0 ≤ t ≤ c} converge for some

sequences an, bn, and c > 0?

Q3: What is the behavior of the relative error

sup
0≤x≤cn

∣∣∣∣
f̂n(x)

f0(x)
− 1

∣∣∣∣

for some constant cn?

It turns out that answers to questions Q1 - Q3 are intimately related to the

limiting behavior of the minimal order statistic Xn:1 ≡ min{X1, . . . ,Xn}. By

Gnedenko (1943) or de Haan and Ferreira (2006, Theorem 1.1.2, page 5)), it is

well-known that there exists a sequence {an} such that

a−1
n Xn:1 →d Y(1.2)

where Y has a nondegenerate limiting distribution G if and only if

nF0(anx) → xγ , x > 0,(1.3)
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for some γ > 0, and hence an → 0. One possible choice of an is an = F−1
0 (1/n),

but any sequence {an} satisfying nF0(an) → 1 also works. Since F0 is concave

the convergence in (1.3) is uniform on any interval [0,K]. Concavity of F0 and

existence of f0 also implies convergence of the derivative:

nanf0(anx) → γxγ−1.(1.4)

By Gnedenko (1943), (1.2) is equivalent to

lim
x→0+

F0(cx)

F0(x)
= cγ , c > 0.(1.5)

Thus (1.2), (1.3), and (1.5) are equivalent. In this case we have:

G(x) = 1 − e−xγ

, x ≥ 0.(1.6)

Since F0 is concave, the power γ ∈ (0, 1].

As illustrations of our general result, we consider the following three hy-

potheses on f0:

G0: The density f0 is bounded at zero: f0(0) < ∞.

G1: For some β ≥ 0 and 0 < C1 < ∞,

(log(1/x))−βf0(x) → C1 as x ց 0.

G2: For some 0 ≤ α < 1 and 0 < C2 < ∞

xαf0(x) → C2 as x ց 0.

Note that in G2 the value α = 1 is not possible for a positive limit C2 since

xf(x) → 0 as x → 0 for any monotone density f ; see e.g. Devroye (1986,

Theorem 6.2, page 173). Below we assume that F0 satisfies the condition (1.5).

Our cases G0 and G1 correspond to γ = 1 and G2 to γ = 1 − α.

One motivation for considering monotone densities which are unbounded

at zero comes from the study of mixture models. An example of this type, as

discussed by Donoho and Jin (2004), is as follows. Suppose X1, . . . ,Xn are i.i.d.

with distribution function F where,

under H0 : F = Φ, the standard normal d.f.

under H1 : F = (1 − ǫ)Φ + ǫΦ(· − µ), ǫ ∈ (0, 1), µ > 0.
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If we transform to Yi ≡ 1 − Φ(Xi) ∼ G, then, for 0 ≤ y ≤ 1,

under H0 : G(y) = y, the Uniform(0, 1) d.f.,

under H1 : G = Gǫ,µ(y) = (1 − ǫ)y + ǫ(1 − Φ(Φ−1(1 − y) − µ)).

It is easily seen that the density gǫ,µ of Gǫ,µ, given by

gǫ,µ(y) = (1 − ǫ) + ǫ
φ(Φ−1(1 − y) − µ)

φ(Φ−1(1 − y))
,

is monotone decreasing on (0, 1) and is unbounded at zero. As we will show in

Section 4, Gǫ,µ satisfies our key hypothesis (1.5) below with γ = 1. Moreover,

we will show that the whole class of models of this type with Φ replaced by the

generalized Gaussian (or Subbotin) distribution, also satisfy (1.5), and hence the

behavior of the Grenander estimator at zero gives information about the behavior

of the contaminating component of the mixture model (in the transformed form)

at zero.

Another motivation for studying these questions in the monotone density

framework is to gain insights for a study of the corresponding questions in the

context of nonparametric estimation of a monotone spectral density. In that

(related, but different) setting, singularities at the origin correspond to the in-

teresting phenomena of long-range dependence and long-memory processes; see

e.g. Cox (1984), Beran (1994), Martin and Walker (1997), Gneiting (2000), and

Ma (2002). Although our results here do not apply directly to the problem of

nonparametric estimation of a monotone spectral density function, it seems plau-

sible that similar results will hold in that setting; note that when f is a spectral

density, the assumptions G1 and G2 correspond to long-memory processes (with

the usual description being in terms of β = 1−α ∈ (0, 1) or the Hurst coefficient

H = 1 − β/2 = 1 − (1 − α)/2 = (1 + α)/2). See Anevski and Soulier (2009) for

recent work on nonparametric estimation of a monotone spectral density.

Let N denote the standard Poisson process on R
+. When (1.5) and hence

also (1.6) hold, it follows from Miller (1976, Theorem 2.1, page 522) together

with Jacod and Shiryaev (2003, Theorem 2.15(c)(ii), pages 306-307), that

nFn(ant) ⇒ N(tγ) in D[0,∞),(1.7)

which should be compared to (1.3).
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Since we are studying the estimator f̂n near zero and because the value

of f̂n at zero is defined as the right limit limxց0 f̂n(x) ≡ f̂n(0), it is sensible to

study instead the right-continuous modification of f̂n, and this of course coincides

with the right derivative f̂R
n of the least concave majorant F̂n of the empirical

distribution function Fn. Therefore we change notation for the rest of this paper

and write f̂n for f̂R
n throughout the following. We write f̂L

n for the left-continuous

Grenander estimator.

We now obtain the following theorem concerning the behavior of the Grenan-

der estimator at zero.

Theorem 1.1. Suppose that (1.5) holds. Let an satisfy nF0(an) ∼ 1, let ĥγ

denote the right derivative of the least concave majorant of t 7→ N(tγ), t ≥ 0.

Then:

(i) nanf̂n(tan) ⇒ ĥγ(t) in D[0,∞).

(ii) For all c ≥ 0

sup
0<x≤can

∣∣∣∣∣
f̂n(x)

f0(x)
− 1

∣∣∣∣∣→d sup
0<t≤c

∣∣∣∣∣
t1−γ ĥγ(t)

γ
− 1

∣∣∣∣∣ .

The behavior of f̂n near zero under the different hypotheses G0, G1, and

G2 now follows as corollaries to Theorem 1.1. Let Yγ ≡ ĥγ(0). We then have

Yγ = sup
t>0

(N(tγ)/t) = sup
s>0

(N(s)/s1/γ).(1.8)

Here we note that Y1 =d 1/U where U ∼ Uniform(0, 1) has distribution function

H1(x) = 1 − 1/x for x ≥ 1. The distribution of Yγ for γ ∈ (0, 1] is given in

Proposition 1.5 below. The first part of the following corollary was established

by Woodroofe and Sun (1993).

Corollary 1.2. Suppose that G0 holds. Then γ = 1, a−1
n = nf0(0+) satisfies

nF0(an) → 1, and it follows that:

(i)

f̂n(0) →d f0(0)ĥ1(0) = f0(0)Y1.

(ii) The processes {t 7→ f̂n(tn−1) : n ≥ 1} satisfy

f̂n(tn−1) ⇒ f0(0)ĥ1(f0(0)t) in D[0,∞).
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(iii) For cn = c/n with c > 0,

sup
0<x≤cn

∣∣∣∣∣
f̂n(x)

f0(x)
− 1

∣∣∣∣∣→d Y1 − 1

which has distribution function H1(x + 1) = 1 − 1/(x + 1) for x ≥ 0.

Corollary 1.3. Suppose that G1 holds. Then F0(x) ∼ C1x(log(1/x))β , so γ = 1,

and a−1
n = C1n(log n)β satisfies nF0(an) → 1. It follows that:

(i)

f̂n(0)

(log n)β
→d C1Y1.

(ii) The processes {t 7→ (log n)−β f̂n(t/(n(log n)β)) : n ≥ 1} satisfy

1

(log n)β
f̂n

(
t

n(log n)β

)
⇒ C1ĥ1(C1t) in D[0,∞)

(iii) For cn = c/(n(log n)β) with c > 0,

sup
0<x≤cn

∣∣∣∣∣
f̂n(x)

f0(x)
− 1

∣∣∣∣∣→d Y1 − 1.

Corollary 1.4. Suppose that G2 holds and set C̃2 = (C2/(1− α))1/(1−α). Then

F0(x) ∼ C2x
1−α/(1 − α), so γ = 1− α, a−1

n = C̃2n
1/(1−α) satisfies nF0(an) → 1,

and it follows that:

(i)

f̂n(0)

nα/(1−α)
→d C̃2Y1−α.(1.9)

(ii) The processes {t 7→ n−α/(1−α)f̂n(tn−1/(1−α)) : n ≥ 1} satisfy

f̂n(tn−1/(1−α))

nα/(1−α)
⇒ C̃2ĥ1−α(C̃2t) in D[0,∞).

(iii) For cn = c/n1/(1−α) with c > 0,

sup
0<x≤cn

∣∣∣∣∣
f̂n(x)

f0(x)
− 1

∣∣∣∣∣→d sup
0<t≤c eC2

∣∣∣∣∣
tαĥ1−α(t)

1 − α
− 1

∣∣∣∣∣ .

Taking β = 0 in (i) of Corollary 1.3 yields the limit theorem (1.1) of Woodroofe and Sun

(1993) as a corollary; in this case C1 = f0(0). Similarly, taking α = 0 in (ii) of

Corollary 1.4 yields the limit theorem (1.1) of Woodroofe and Sun (1993) as a
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corollary; in this case C2 = f0(0). Note that Theorem 1.1 yields further corollar-

ies when assumptions G1 and G2 are modified by other slowly varying functions.

Recall the definition (1.8) of Yγ . The following proposition gives the distri-

bution of Yγ for γ ∈ (0, 1].

Proposition 1.5. For fixed 0 < γ ≤ 1 and x > 0,

Pr

(
sup
s>0

{
N(s)

s1/γ

}
≤ x

)
=

{
1 − 1/x , if γ = 1, x ≥ 1,

1 −
∑∞

k=1 ak(x, γ) , if γ < 1, x > 0,

where the sequence {ak(x, γ)}k≥1 is constructed recursively as follows:

a1(x, γ) = p

((
1

x

)γ

; 1

)
,

and, for j ≥ 1,

ak(x, γ) = p

((
k

x

)γ

; k

)
−

k−1∑

i=1

{
ai(x, γ) · p

((
k

x

)γ

−

(
i

x

)γ

; k − i

)}
,

where p(m; k) ≡ e−mmk/k!.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gamma=1.0
gamma=0.8
gamma=0.6
gamma=0.4
gamma=0.2

Figure 1. The distribution functions of Yγ, γ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
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Remark 1.6. The random variables Yγ are increasingly heavy-tailed as γ de-

creases; cf. Figure 1. Let T1, T2, . . . be the event times of the Poisson process N;

i.e. N(t) =
∑∞

j=1 1[Tj≤t]. Then note that

Yγ
d
= sup

j≥1

j

T
1/γ
j

≥
1

T
1/γ
1

where T1 ∼ Exponential(1). On the other hand

Yγ =

(
sup
t>0

N(t)γ

t

)1/γ

≤

(
sup
t>0

N(t)

t

)1/γ
d
=

1

U1/γ

where U ∼ Uniform(0, 1). Thus it is easily seen that E(Y r
γ ) < ∞ if and only if

r < γ, and that the distribution function Fγ of Yγ is bounded above and below by

the distribution functions GL
γ and GU

γ of 1/T
1/γ
1 and 1/U1/γ , respectively.

The proofs of the above results appear in Appendix A. They rely heavily

on a set equality known as the “switching relation”. We study this relation

using convex analysis in Section 2. Section 3 gives some numerical results which

accompany the results presented here, and Section 4 studies applications to the

estimation of mixture models.

2. Switching relations

In this section we consider several general variants of the so-called switching

relation first given in Groeneboom (1985), and used repeatedly by other authors,

including Kulikov and Lopuhaä (2005, 2006), and van der Vaart and Wellner (1996).

Other versions of the switching relation were also studied by van der Vaart and van der Laan

(2006, Lemma 4.1). In particular, we provide a novel proof of the result using

convex analysis. This approach also allows us to re-state the relation without re-

stricting the domain to compact intervals. Throughout this section we make use

of definitions from convex analysis (cf. Rockafellar (1970); Rockafellar and Wets

(1998); Boyd et al. (2004)) which are given in Appendix B.

Suppose that Φ is a function, Φ : D → R, defined on the (possibly infinite)

closed interval D ⊂ R. The least concave majorant Φ̂ of Φ is the pointwise

infimum of all closed concave functions g : D → R with g ≥ Φ. Since Φ̂ is

concave, it is continuous on Do, the interior of D. Furthermore, Φ̂ has left

and right derivatives on Do, and is differentiable with the exception of at most
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countably many points. Let φ̂L and φ̂R denote the left and right derivatives,

respectively, of Φ̂.

If Φ is upper semicontinuous, then so is the function Φy(x) = Φ(x) − yx for

each y ∈ R. If D is compact, then Φy attains a maximum on D, and the set

of points achieving the maximum is closed. Compactness of D was assumed by

van der Vaart and van der Laan (2006, see their Lemma 4.1, page 24). One of

our goals here is to relax this assumption.

Assuming they are defined, we consider the argmax functions

κL(y) ≡ argmaxLΦy ≡ argmaxL
x{Φ(x) − yx}

= inf{x ∈ D : Φy(x) = sup
z∈D

Φy(z)},

κR(y) ≡ argmaxRΦy ≡ argmaxR
x {Φ(x) − yx}

= sup{x ∈ D : Φy(x) = sup
z∈D

Φy(z)}.

Theorem 2.1. Suppose that Φ is a proper upper-semicontinuous real-valued

function defined on a closed subset D ⊂ R. Then Φ̂ is proper if and only if

Φ ≤ l for some linear function l on D. Furthermore, if conv(hypo(Φ)) is closed,

then the functions κL and κR are well defined and the following two switching

relations hold: for x ∈ D and y ∈ R,

S1: φ̂L(x) < y if and only if κR(y) < x.

S2: φ̂R(x) ≤ y if and only if κL(y) ≤ x.

When Φ is the empirical distribution function Fn as in Section 1, then Φ̂ = F̂n

is the least concave majorant of Fn, and φ̂L = f̂L
n the Grenander estimator as

defined in Section 1, while φ̂R = f̂n = f̂R
n is the right continuous version of the

estimator. In this situation the argmax functions κR, κL correspond to

ŝR
n (y) = sup{x ≥ 0 : Fn(x) − yx = sup

z≥0
(Fn(z) − yz)},

ŝL
n(y) = inf{x ≥ 0 : Fn(x) − yx = sup

z≥0
(Fn(z) − yz)}.

The switching relation given by Groeneboom (1985) says that with probability

one

{f̂L
n (x) ≤ y} = {ŝR

n (y) ≤ x}.(2.10)
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van der Vaart and Wellner (1996, page 296), say that (2.10) holds for every x and

y; see also Kulikov and Lopuhaä (2005, page 2229), and Kulikov and Lopuhaä

(2006, page 744). The advantage of (2.10) is immediate: the MLE is related to

a continuous map of a process whose behavior is well-understood.

The following corollary gives the conclusion of Theorem 2.1 when Φ is the

empirical distribution function Fn.

Corollary 2.2. Let F̂n be the least concave majorant of the empirical distribution

function Fn, and let f̂L
n and f̂R

n denote its left and right derivatives respectively.

Then:

{f̂L
n (x) < y} = {ŝR

n (y) < x},(2.11)

{f̂R
n (x) ≤ y} = {ŝL

n(y) ≤ x}.(2.12)

The following example shows, however, that the set identity (2.10) can fail.

Example 2.3. Suppose that we observe (X1,X2,X3) = (1, 2, 4). Then the MLE

f̂L
n is given by

f̂L
n (x) =





1/3, 0 < x ≤ 2,

1/6, 2 < x ≤ 4,

0, 4 < x < ∞.

The process ŝR
n is given by

ŝR
n (y) =





4, 0 < y ≤ 1/6,

2, 1/6 < y ≤ 1/3,

0, 1/3 < y < ∞.

Note that (2.10) fails if x = 4 and 0 < y < 1/6, since in this case f̂L
n (x) =

f̂L
n (4) = 1/6 and the event {f̂L

n (x) ≤ y} fails to hold while ŝR
n (y) = 4 and the

event {ŝR
n (y) ≤ x} holds. However, (2.11) does hold: with x = 4 and 0 < y < 1/6,

both of the events {f̂L
n (x) < y} and {ŝR

n (y) < x} fail to hold. Some checking shows

that (2.11) as well as (2.12) hold for all other values of x and y.

Our proof of Theorem 2.1 will be based on the following proposition which is

a consequence of general facts concerning convex functions as given in Rockafellar

(1970) and Rockafellar and Wets (1998).
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Proposition 2.4. Let h be a closed proper convex function on R, and let f be

its conjugate,

f(y) = sup
x∈R

{yx − h(x)}.

Let h′
− and h′

+ be the left and right derivatives of h, and define functions s− and

s+ by

s−(y) = inf{x ∈ R : yx − h(x) = f(y)},(2.13)

s+(y) = sup{x ∈ R : yx − h(x) = f(y)}.(2.14)

Then the following set identities hold:

{(x, y) : h′
−(x) ≤ y} = {(x, y) : s+(y) ≥ x},(2.15)

{(x, y) : h′
+(x) < y} = {(x, y) : s−(y) > x},(2.16)

Proof. All the references in this proof are to Rockafellar (1970). By Theorem

24.3 (page 232) the set Γ = {(x, y) ∈ R
2 : y ∈ ∂h(x)} (i.e. the graph of ∂h), is a

maximal complete non-decreasing curve. By Theorem 23.5, page 218, the closed

proper convex function h and its conjugate f satisfy

h(x) + f(y) ≥ xy

and equality holds if and only if y ∈ ∂h(x), or equivalently if x ∈ ∂f(y) where ∂h

and ∂f denote the subdifferentials of h and f respectively (see page 215). Thus

we also have:

Γ = {(x, y) ∈ R
2 : x ∈ ∂f(x)},

and, by the definitions of s− and s+,

Γ = {(x, y) : s−(y) ≤ x ≤ s+(y)}.

By Theorem 24.1 (page 227) the curve Γ is defined by the left and right derivatives

of h:

Γ = {(x, y) : h′
−(x) ≤ y ≤ h′

+(x)}.(2.17)

Using the dual representation we obtain:

Γ = {(x, y) : f ′
−(y) ≤ x ≤ f ′

+(y)},(2.18)
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therefore s− ≡ f ′
− and s+ ≡ f ′

+. Moreover, the functions h′
− and f ′

− are left-

continuous, the functions h′
+ and f ′

+ are right continuous, and all of these func-

tions are nondecreasing.

From (2.17) and (2.18) it follows that:

{h′
−(x) ≤ y} = {f ′

+(y) ≥ x},

which implies (2.15). Since the functions h and f are conjugate to each other,

the relations between them are symmetric. Thus we have

{f ′
−(y) ≤ x} = {h′

+(x) ≥ y},

or equivalently

{f ′
−(y) > x} = {h′

+(x) < y},

which implies (2.16). �

Before proving Theorem 2.1 we need the following two lemmas.

Lemma 2.5. Let S = argmaxD Φ and Ŝ = argmaxD Φ̂ be the maximal superlevel

sets of Φ and Φ̂. Then the set Ŝ is defined if and only if the set S is defined and

in this case conv(S) ⊆ Ŝ.

Lemma 2.6. If conv(hypo(Φ)) is a closed convex set then conv(S) = Ŝ.

Proof of Lemma 2.5: Since cl(Φ) ≤ Φ̂ the set S is defined if Ŝ is defined. On

the other hand, if S is defined then Φ is bounded from above on D. Since:

sup
D

Φ = sup
D

Φ̂,

the function Φ̂ is also bounded from above on D, i.e. the set Ŝ is defined.

By (2.19) we have S ⊆ Ŝ. Since Φ and Φ̂ are upper semicontinuous the sets

S and Ŝ are closed. Since Ŝ is convex we have conv(S) ⊆ Ŝ. �

Proof of Lemma 2.6: Indeed, we have conv(hypo(Φ)) ≡ conv(cl(hypo(Φ))),

and

conv(hypo(Φ)) ⊆ hypo(Φ̂).

Therefore conv(hypo(Φ)) is a hypograph of some closed concave function H such

that:

Φ ≤ H ≤ Φ̂.
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Thus H = Φ̂. The set Ŝ is a face of hypo(Φ̂) and the set conv(S) is a face

of conv(hypo(Φ)). The statement now follows from Rockafellar (1970, Theorem

18.3, page 165). �

Proof of Theorem 2.1. To prove the first statement, first suppose Φ̂ is proper.

We have:

hypo(Φ) ⊆ hypo(cl(Φ)) ≡ cl(hypo(Φ)) ⊆ cl(conv(hypo(Φ))) ≡ hypo(Φ̂)(2.19)

and therefore hypo(Φ) is bounded by any support plane of hypo(Φ̂). This implies

that there exists a linear function l such that Φ ≤ l.

Now suppose that there exists a linear function l such that Φ ≤ l on D.

Then cl(Φ) ≤ l and from (2.19) we have:

hypo(Φ) ⊆ hypo(l),

conv(hypo(Φ)) ⊆ hypo(l),

hypo(Φ̂) ≡ cl(conv(hypo(Φ))) ⊆ hypo(l).

Thus Φ̂ < +∞ on D. Since hypo(Φ) ⊆ hypo(Φ̂) there exists a finite point in

hypo(Φ̂).

To show that the two switching relations hold, first consider the convex

function h = −Φ̂. Then

φ̂L(x) = −h′
−(x),

φ̂R(x) = −h′
+(x),

κL(y) = s−(−y),

κR(y) = s+(−y),

and by the properness of Φ̂ proved above and Proposition 2.4, it suffices to show

that

argmaxL
x (Φ(x) − yx) = argmaxL

x (Φ̂(x) − yx),

argmaxR
x (Φ(x) − yx) = argmaxR

x (Φ̂(x) − yx).

To accomplish this, it suffices, without loss of generality, to prove the equalities in

the last display when y = 0, and this in turn will follow if we relate the maximal

superlevel sets of Φ and Φ̂. This follows from Lemmas 2.5 and 2.6. �
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Remark 2.7. Note that conv(S) 6= Ŝ in general. To see this, consider the

function Φ defined on R as follows:

Φ(x) =





0 x 6= 0

1 x = 0.

We have that Φ is upper-semicontinuous, S = {0} and Φ̂ ≡ 1, so Ŝ = R.

Remark 2.8. Note that if conv(hypo(Φ)) is a polyhedral set, then it is closed (see

e.g. Rockafellar (1970, Corollary 19.1.2)). This is the case in our applications.

3. Some Numerical Results

Figure 2 gives plots of the empirical distributions of m = 10000 Monte Carlo

samples from the distributions of f̂n(0)/(C2n
α/(1 − α))1/(1−α)) when n = 200

and n = 500, together with the limiting distribution function obtained in (1.9).

The true density f0 on the right side in Figure 2 is

f0(x) =

∫ ∞

0

1

y
1[0,y](x)

yc−1

Γ(c)
exp(−y)dy;(3.20)

For c ∈ (0, 1), this family satisfies (G2) with α = 1 − c and C2 = 1/(αΓ(1 − α)).

(Note that for c = 1, f0(x) ∼ log(1/x) as x ց 0.)

The true density f0 on the left side in Figure 2 is

f0(x) =
1

Beta(1 − a, 2)
x−a(1 − x)1(0,1](x);(3.21)

For a ∈ [0, 1), this family satisfies (G2) with α = a and C2 = 1/Beta(1 − α, 2).

Figure 3 shows simulations of the limiting distribution

sup
0≤t≤c

∣∣∣t1−γĥ(t)/γ − 1
∣∣∣(3.22)

for different values of c and γ. Recall that if γ = 1 the supremum occurs at t = 0

regardless of the value of c, and the limiting distribution (3.22) has cumulative

distribution function 1 − 1/(x + 1). However, for γ < 1, the distribution of

(3.22) depends both on γ and on c, although the dependence on c is not visually

prominent in Figure 3. Table 1 shows estimated values of

P

(
sup

0≤t≤c
|t1−γĥ(t)/γ − 1| = 1

)
(3.23)



GRENANDER ESTIMATOR AT ZERO 15

0 20 40 60 80 100

0.
0

2.
0

4.
0

6.
0

8.
0

0.
1

f
dc

n=200

n=500

n=infinity

0 20 40 60 80 100

0.
0

2.
0

4.
0

6.
0

8.
0

0.
1

f
dc

n=200

n=500

n=infinity

0 20 40 60 80 100

0.
0

2.
0

4.
0

6.
0

8.
0

0.
1

f
dc

n=200

n=500

n=infinity

0 20 40 60 80 100

0.
0

2.
0

4.
0

6.
0

8.
0

0.
1

f
dc

n=200

n=500

n=infinity

0 20 40 60 80 100

0.
0

2.
0

4.
0

6.
0

8.
0

0.
1

f
dc

n=200

n=500

n=infinity

0 20 40 60 80 100

0.
0

2.
0

4.
0

6.
0

8.
0

0.
1

f
dc

n=200

n=500

n=infinity

Figure 2. Empirical distributions of the re-scaled MLE at

zero when sampling from the Beta distribution (left) and the

Gamma distribution (right): from top to bottom we have

α = 0.2, 0.5, 0.8.

for different c and γ < 1, which clearly depends on the cutoff value c (upper

bound on the standard deviation in each case is 0.016). Note that (3.22) is equal

to one if the location of the supremum occurs at t = 0 (with probability one).
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Figure 3. Empirical distributions of the supremum mea-

sure: the cutoff values shown are c = 5 (top left), c = 25 (top

right), c = 100 (bottom left), c = 1000 (bottom right).

Table 1. Simulation of (3.23) for different values of γ and c.

c = 0.5 c = 5 c = 25 c = 100 c = 1000

γ = 0.25 0.361 0.171 0.140 0.092 0.06

γ = 0.50 0.422 0.249 0.190 0.162 0.148

γ = 0.75 0.489 0.387 0.349 0.358 0.367

Cumulative distribution functions for the location of the supremum in (3.22)

are shown in Figure 4, which clearly depend both on γ and on c.

4. Application to Mixtures
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Figure 4. Empirical distributions of the location where

the supremum occurs: from left to right we have γ =

0.25, 0.50, 0.75. Recall that for γ = 1, the (non-unique) loca-

tion of the supremum is always zero by Corollary 1.2. The

data were re-scaled to lie within the interval [0, 1].

4.1. Behavior near zero. First, suppose that X1, . . . ,Xn are i.i.d. with distri-

bution function F where,

under H0 : F = Φr, the generalized normal distribution

under H1 : F = (1 − ǫ)Φr + ǫΦr(· − µ), ǫ ∈ (0, 1), µ > 0,

where Φr(x) ≡
∫ x
−∞ φr(y)dy with φr(y) ≡ exp(−|y|r/r)/Cr for r > 0 gives

the generalized normal (or Subbotin) distribution; here Cr ≡ 2Γ(1/r)r(1/r)−1

is the normalizing constant. If we transform to Yi ≡ 1 − Φr(Xi) ∼ G, then, for

0 ≤ y ≤ 1,

under H0 : G(y) = y, the Uniform(0, 1) d.f.,

under H1 : G(y) = Gǫ,µ,r(y) = (1 − ǫ)y + ǫ(1 − Φr(Φ
−1
r (1 − y) − µ)).

Let gǫ,µ,r denote the density of Gǫ,µ,r; thus

gǫ,µ,r(y) = 1 − ǫ + ǫ exp

{
−

1

r

(
|Φ−1

r (1 − y) − µ|r − |Φ−1
r (1 − y)|r

)}
.(4.24)

It is easily seen that gǫ,µ,r is monotone decreasing on (0, 1) and is unbounded at

zero if r > 1. Figure 5 shows plots of these densities for ǫ = .1, µ = 1, and r ∈

{1.0, 1.1, . . . , 2.0}. Note that gǫ,µ,1 is bounded at 0: in fact gǫ,µ,1(y) = 1− ǫ+ ǫeµ

for 0 ≤ y ≤ 2−1e−µ.
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Figure 5. Generalized Gaussian (or Subbotin) mixture den-

sities with ǫ = .1, µ = 1, r ∈ {1.0, 1.2, . . . , 2.0} (black to light

grey, respectively) as given by (4.24).

Proposition 4.1. The distribution Fµ,r(y) ≡ 1−Φr(Φ
−1
r (1−y)−µ) is regularly

varying at 0 with exponent 1. That is, for any c > 0,

lim
y→0+

Fµ,r(cy)

Fµ,r(y)
= c,

i.e. (1.5) holds with γ = 1.

Proof. Define κr(y) = Φ−1
r (1 − y). Our first goal will be to show that

lim
y→0

κr(y)

κ̃r(y)
= 1,(4.25)

where (for y small)

κ̃r(y) =

(
−r log

(
Cr y

{
r log

(
1

Cry

)}(r−1)/r
))1/r

.

To prove (4.25), it is enough to show that

lim
y→0

κ̃r(y)r−1(κr(y) − κ̃r(y)) = 0.(4.26)

This result follows from de Haan and Ferreira (2006, Theorem 1.1.2). Define

bn = κ̃r(1/n), an = 1/br−1
n ,
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and choose F = Φr in the statement of Theorem 1.1.2. Then, if we can show

that

n(1 − Φr(anx + bn)) → log G(x) ≡ e−x, x ∈ R,(4.27)

it follows from de Haan and Ferreira (2006, Theorem 1.1.2 and Section 1.1.2)

that for all x ∈ R

lim
y→0

U(x/y) − b⌊1/y⌋

a⌊1/y⌋
= G−1(e−1/x) = log(1/x),

where U(t) = (1/(1 − Φr))
−1(t) = Φ−1

r (1 − 1/t). Choosing x = 1 yields (4.26).

Therefore, we need to prove (4.27).

To do this, we make use of the following, which is a generalization of Mills’

ratio to the generalized Gaussian family

1 − Φr(z) ∼
φr(z)

zr−1
as z → ∞.(4.28)

The statement follows from l’Hôpital’s rule:

lim
z→∞

∫∞
z φr(y)dy

z1−rφr(z)
= lim

z→∞

−φr(z)

(1 − r)z−rφr(z) + z1−rφr(z)(−zr−1)

= lim
z→∞

1

1 − (1 − r)z−r
= 1.

Now,

n(1 − Φr(anx + bn)) ∼ n
φr(anx + bn)

(anx + bn)r−1

=
n

Crb
r−1
n

exp
(
− br

n

r

(
1 + anx

bn

)r)

(1 + anx/bn)r−1

∼
n

Crb
r−1
n

exp

(
−

br
n

r

(
1 +

rx

br
n

))

= exp

(
−

(
br
n

r
+ (r − 1) log bn − log n + log Cr

))
exp(−x)

→ exp(−0) · exp(−x)

by using the definition of bn. We have thus shown that (4.25) holds.

Then, for y → 0, by (4.28) and (4.25)

Fµ,r(y) = 1 − Φr(κr(y) − µ) ∼ 1 − Φr(κ̃r(y) − µ)

∼
φr(κ̃r(y) − µ)

(κ̃r(y) − µ)r−1
.
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Plugging in the definition of φr, we find that

Fµ,r(y) ∼
1/Cr

(κ̃r(y) − µ)r−1
exp

(
−

κ̃r(y)r

r

∣∣∣∣1 −
µ

κ̃r(y)

∣∣∣∣
r)

=
1/Cr

(κ̃r(y) − µ)r−1
exp

{
(log(Cry) + log(r log(1/(Cry))))

∣∣∣∣1 −
µ

κ̃r(y)

∣∣∣∣
r)

=
1/Cr

(κ̃r(y) − µ)r−1
(Cry)

˛̨
˛1− µ

κ̃r(y)

˛̨
˛
r

·

{
r log

1

Cry

} r−1

r

˛̨
˛1− µ

κ̃r(y)

˛̨
˛
r

.

Note that limy→0 κ̃r(cy)/κ̃r(y) = 1. Therefore,

Fµ,r(cy)

Fµ,r(y)
∼ c

˛̨
˛1− µ

κ̃r(cy)

˛̨
˛
r

· (Cry)

˛̨
˛1− µ

κ̃r(cy)

˛̨
˛
r

−
˛̨
˛1− µ

κ̃r(y)

˛̨
˛
r

·

(
κ̃r(y) − µ

κ̃r(cy) − µ

)r−1

·

{
r log 1

Crcy

} r−1

r

˛̨
˛1− µ

κ̃r(cy)

˛̨
˛
r

{
r log 1

Cry

} r−1

r

˛̨
˛1− µ

κ̃r(y)

˛̨
˛
r

→ c · 1 · 1 · 1 = c.

Thus (1.5) holds with γ = 1. �

By the theory of regular variation (see e.g. Bingham et al. (1989, page 21)),

this implies that Fµ,r(y) = yℓ(y) where ℓ is slowly varying at 0. It then follows

easily that (1.5) holds for F0 = Gǫ,µ,r with exponent 1. Thus our theory of

Section 1 applies with an of Theorem 1.1 taken to be an = Gǫ,µ,γ(1/n); i.e.

1

n
= Gǫ,µ,r(an) = (1 − ǫ)an + ǫFµ,r(an) =̇ ǫFµ,r(an)

where the last approximation is valid for r > 1, but not for r = 1. When r = 1,

the first equality can be solved explicitly, and we find:

an =

{
1 − Φr(Φ

−1
r (1 − (1/(nǫ))) + µ), when r > 1

n−1(1 − ǫ + ǫeµ)−1, when r = 1.
(4.29)

We conclude that Theorem 1.1 holds for an as in the last display where f̂n is the

Grenander estimator of gǫ,µ,r based on Y1, . . . , Yn.

Another interesting mixture family to consider is as follows: suppose that

Φ1, Φ2 are two fixed distribution functions: then

under H0 : F = Φ1,

under H1 : F = (1 − ǫ)Φ1 + ǫΦ2, ǫ ∈ (0, 1).
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Using the transformation to Yi ≡ 1 − Φ1(Xi) ∼ G, then, for 0 ≤ y ≤ 1 we find

that under H1 the distribution of the Yi’s is given by

G(y) = (1 − ǫ)y + ǫ(1 − Φ2(Φ
−1
1 (1 − y))),

g(y) = (1 − ǫ) + ǫ
φ2(Φ

−1
1 (1 − y))

φ1(Φ
−1
1 (1 − y))

.

For Φ2 given in terms of Φ1 by the (Lehmann alternative) distribution function

Φ2(y) = 1 − (1 − Φ1(y))γ , this becomes

G(y) = (1 − ǫ)y + ǫyγ ,

g(y) = (1 − ǫ) + ǫγyγ−1.

When 0 < γ < 1 this family fits into the framework of our condition G2 with

α = 1 − γ and C2 = ǫγ.

4.2. Estimation of the contaminating density. Suppose that Gǫ,F (y) = (1−

ǫ)y + ǫF (y) where F is a concave distribution on [0, 1] with monotone decreasing

density f . Thus the density gǫ,F of Gǫ,F is given by gǫ,F (y) = (1−ǫ)+ǫf(y). Note

that gǫ,F is also monotone decreasing, and gǫ,F (y) ≥ 1−ǫ+ǫf(1) = 1−ǫ = gǫ,F (1)

if f(1) = 0. For ǫ > 0 we can write

f(y) =
gǫ,F (y) − (1 − ǫ)

ǫ
.

If Y1, . . . , Yn are i.i.d. gǫ,F then we can estimate gǫ,F by the Grenander estimator

ĝn, and we can estimate ǫ by

ǫ̂n = 1 − ĝn(1).

This results in the following estimator f̂n of the contaminating density f :

f̂n(y) =
ĝn(y) − (1 − ǫ̂n)

ǫ̂n
=

ĝn(y) − ĝn(1)

1 − ĝn(1)
,

which is quite similar in spirit to a setting studied by Swanepoel (1999). Here,

however, we propose using the shape constraint of monotonicity, and hence the

Grenander estimator, to estimate both ǫ and f . We intend to study this estimator

elsewhere.
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Appendix A: Proofs for Section 1

Before proving Theorem 1.1, we need the following two lemmas. The first

lemma shows that the functionals argmaxR and argmaxL are both Op(1), while

the second shows these are equivalent almost surely for the limiting Poisson pro-

cess. Together, these two lemmas will show that both functionals argmaxR and

argmaxL are continuous. Below we assume that (1.5) holds and that nF0(an) ∼ 1.

Thus both (1.3) and (1.7) also hold.

Lemma 5.2. (i) When γ = 1 and x > 1, argmaxL,R
v {nFn(anv) − xv} = Op(1).

(ii) When γ ∈ (0, 1) and x > 0, argmaxL,R
v {nFn(anv) − xv} = Op(1).

Proof. It suffices to show that

lim sup
n→∞

P (sup
v≥K

{nFn(anv) − xv} ≥ 0) → 0, as K → ∞

under the conditions specified. Let h(x) = x(log x−1)+1 and recall the inequality

P (Bin(n, p)/(np) ≥ t) ≤ exp(−nph(t))

for t ≥ 1 where Bin(n, p) denotes a Binomial(n, p) random variable; see e.g.

Shorack and Wellner (1986, inequality 10.3.2, page 415). It follows that

P (sup
v≥K

{nFn(anv) − xv} ≥ 0)

= P (∪∞
j=K{nFn(anv) − xv ≥ 0 for some v ∈ [j, j + 1)})

≤

∞∑

j=K

P (nFn(an(j + 1)) − xj ≥ 0)

=

∞∑

j=K

P

(
nFn(an(j + 1))

nF0(an(j + 1))
≥

xj

nF0(an(j + 1))

)

≤

∞∑

j=K

exp

(
−nF0(an(j + 1))h

(
xj

nF0(an(j + 1))

))
(5.30)

Next, since F0 is concave,

nF0(an(j + 1)) ≤ nF0(an(K + 1))
j + 1

K + 1

for j ≥ K and nF0(an(K +1)) → (K +1)γ and n → ∞. Therefore, for all j ≥ K

and sufficiently large n, we have

xj

nF0(an(j + 1))
≥ δ(K + 1)1−γ xj

j + 1



GRENANDER ESTIMATOR AT ZERO 23

for any fixed δ < 1. We need to handle the two cases γ = 1 and γ < 1 separately.

Note that if γ < 1, then the above display shows that K,n can be chosen suffi-

ciently large so that (xj)/nF0(an(j+1)) is uniformly large. On the other hand, if

γ = 1 and x > 1 then we can pick δ,K, n large enough so that (xj)/nF0(an(j+1))

is strictly greater than 1 + ǫ for some ǫ > 0, again uniformly in j.

Suppose first that γ < 1. Then for K,n large, since h(x) ∼ x log x as x → ∞,

there exists a constant 0 < C < 1 such that for all j ≥ K

nF0(an(j + 1))h

(
xj

nF0(an(j + 1))

)
≥ C(xj) log

(
xj

j + 1

)

≥ Cx(xj),

for some other constant Cx > 0. This shows that the sum in (5.30) converges to

zero as K → ∞, as required.

Suppose next that γ = 1. Note that the function h(x) > 0 for x > 1.

Therefore, combining our arguments above, we find that for all j ≥ K

nF0(an(j + 1))h

(
xj

nF0(an(j + 1))

)
≥ δ(j + 1)h

(
xj

nF0(an(j + 1))

)

≥ Cx,δ(j + 1),

again for some Cx,δ > 0. This again implies that the sum in (5.30) converges to

zero as K → ∞, and completes the proof. �

Lemma 5.3. Suppose that γ ∈ (0, 1]. Then

V L
x ≡ argmaxL

v {N(vγ) − xv} = argmaxR
v {N(vγ) − xv} ≡ V R

x a.s.

Proof. Suppose that V L
x < V R

x . Then it follows that N((V L
x )γ) − xV L

x =

N((V R
x )γ) − xV R

x , or, equivalently

N((V R
x )γ) − N((V L

x )γ) = x{V R
x − V L

x }.

Now (V R
x )γ , (V L

x )γ ∈ J(N) ≡ {t > 0 : N(t) − N(t−) ≥ 1}, so the left side

of the last display takes values in the set {1, 2, . . .}, while the right side takes

values in x · {r1/γ − s1/γ : r, s ∈ J(N), r > s}. But it is well-known that all the

(joint) distributions of the points in J(N) are absolutely continuous with respect

to Lebesgue measure, and hence the equality in the last display holds only for

sets with probability 0. �
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Proof of Theorem 1.1: We first prove convergence of the one-dimensional

distributions of nanf̂n(ant). Fix K > 0, and let x > 1{γ=1} and t ∈ (0,K]. By

the switching relation (2.12),

P (nanf̂n(ant) ≤ x) = P (ŝL
n(x/(nan)) ≤ ant)

= P (argmaxL
s {Fn(s) − xs/(nan)} ≤ ant)

= P (argmaxL
v {Fn(van) − x(v/n)} ≤ t)

= P (argmaxL
v {nFn(van) − xv} ≤ t)

→ P (argmaxL
v {N(vγ) − xv} ≤ t)

= P (ĥγ(t) ≤ x)

where the convergence follows from (1.7), and the argmax continuous mapping

theorem for D[0,∞) applied to the processes {v 7→ nFn(van) − xv : v ≥ 0}; see

e.g. Ferger (2004, Theorem 3 and Corollary 1). Note that Lemma 5.2 yields the

Op(1) hypothesis of Ferger’s Corollary 1, while Lemma 5.3 shows that equality

holds in the limit conclusion.

Convergence of the finite-dimensional distributions of ĥn(t) ≡ nanf̂n(ant)

follows in the same way by using the process convergence in (1.7) for finitely

many values (t1, x1), . . . , (tm, xm) where each tj ∈ R
+ and xj > 1{γ=1}.

To verify tightness of ĥn in D[0,∞) we use Billingsley (1999, Theorem 16.8).

Thus, it is sufficient to show that for any K > 0, and any ǫ > 0

lim
M→∞

lim sup
n

P

(
sup

0≤t≤K
|ĥn(t)| ≥ M

)
= 0(5.31)

lim
δ→0

lim sup
n

P
(
wδ,K(ĥn) ≥ ǫ

)
= 0,(5.32)

where wδ,K(h) is the modulus of continuity in the Skorohod topology defined as

wδ,K(h) = inf
{ti}r

max
0<i≤r

sup {|h(t) − h(s)| : s, t ∈ [ti−1, ti) ∩ [0,K]} ,

where {ti}r is a partition of [0,K] such that 0 = t0 < t1 < . . . < tr = K

and ti − ti−1 > δ. Suppose then that h is a piecewise constant function with

discontinuities occurring at the (ordered) points {τi}i≥0. Then if δ ≤ infi |τi −

τi−1| we necessarily have that wδ,K(h) = 0.
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First, note that since ĥn is non-increasing,

‖ĥn‖
m
0 ≡ sup

0≤t≤m
|ĥn(t)| = ĥn(0),

and hence (5.31) follows from the finite-dimensional convergence proved above.

Next, fix ǫ > 0. Let 0 = τn,0 < τn,1 < · · · < τn,Kn
< K denote the (ordered)

jump points of ĥn, and let 0 = Tn,0 < Tn,1 < · · · < Tn,Jn
< K denote the (again,

ordered) jump points of nFn(ant). Because {τn,1, . . . , τn,Kn
} ⊂ {Tn,1, . . . , Tn,Jn

},

it follows that inf{τi,n − τi−1,n} ≥ inf{Ti,n − Ti−1,n} and hence

P
(
wδ,K(ĥn) ≥ ǫ

)
≤ P

(
inf

i=1,...,Jn

{Ti,n − Ti−1,n} < δ

)
.

Now, by (1.7) and continuity of the inverse map (see e.g. Whitt (2002, Theorem

13.6.3, page 446))

(Tn,1, . . . , Tn,Jn
, 0, 0, . . .) ⇒ (T

1/γ
1 , . . . , T

1/γ
J , 0, 0, . . .),

where T1, . . . , TJ denote the successive arrival times on [0,K] of a standard Pois-

son process. Thus,

lim
δ→0

P

(
inf

i=1,...,J
{T

1/γ
i − T

1/γ
i−1} < δ

)
= 0.

and therefore (5.32) holds. This completes the proof of (i).

Now we prove (ii): Fix 0 < c < ∞. We first write

sup
0<x≤can

∣∣∣∣∣
f̂n(x)

f0(x)
− 1

∣∣∣∣∣ = sup
0<t≤c

∣∣∣∣∣
nanf̂n(tan)

nanf0(tan)
− 1

∣∣∣∣∣ .(5.33)

Suppose we could show that the ratio process nanf̂n(ant)/nanf0(ant) converges

to the process t1−γĥγ(t)/γ in D[0,∞). Then the conclusion follows by noting that

the functional h 7→ sup0<t≤c |h| is continuous in the Skorohod topology as long as

c is not a point of discontinuity of h (Jacod and Shiryaev (2003, Proposition VI

2.4, page 339)). Since N(tγ) is stochastically continuous (i.e. P (N(tγ)−N(tγ−) >

0) = 0 for each fixed t > 0), t1−γ ĥγ(t)/γ is almost surely continuous at c.

It remains to prove convergence of the ratio. Fix K > c, and again we may

assume that K is a continuity point. Consider first the term in the denominator,

nanf0(ant): it follows from (1.4) that

gn(t) ≡ (nanf0(ant))−1 → γ−1t1−γ ≡ g(t)
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where g is monotone increasing and uniformly continuous on [0,K]. Thus gn → g

in C[0,K]. Since the term in the numerator satisfies hn(t) ≡ nanf̂n(ant) ⇒

ĥγ(t) ≡ h(t) in D[0,K], it follows that gnhn ⇒ gh in D[0,K], as required. Here,

we have again used the continuity of the supremum. This completes the proof

of (ii). �

Before proving Corollaries 1.2 - 1.4 we state the following lemma.

Lemma 5.4. Suppose that an = p(1/n) for some function with p(0) = 0 satisfy-

ing limx→0+ p′(x)f0(p(x)) = 1. Then nF0(an) → 1.

Proof: This follows easily from l’Hôpital’s rule, since

lim
n→∞

nF0(an) = lim
x→0+

F0(p(x))

x
= lim

x→0+
f0(p(x))p′(x).

�

Proof of Corollary 1.2: Under the assumption G0 we see that F0(x) ∼

f0(0+)x as x → 0, so (1.5) holds with γ = 1. The claim that an = 1/(nf0(0+))

satisfies nF0(an) → 1 follows from Lemma 5.4 with p(x) = x/f0(0+). For (i) note

that ĥ1(0) = ĥ1(0+) = supt>0(N(t)/t), and the indicated equality in distribution

follows from Pyke (1959); see Proposition 1.5 and its proof. (ii) follows directly

from (i) of Theorem 1.1. To prove (iii), note that from (ii) of Theorem 1.1 it

suffices to show that

sup
0<t≤c

∣∣∣ĥ1(t) − 1
∣∣∣ =

∣∣∣ĥ1(0+) − 1
∣∣∣ = ĥ1(0+) − 1 = Y1 − 1(5.34)

for each c > 0 where ĥ1(t) is the right derivative of the LCM of N(t). The equality

in (5.34) holds if ĥ1(c) > 1, since ĥ1 is decreasing by definition. By the switching

relation (2.12), we have the equivalence

{ĥ1(c) > 1} = {ŝL(1) > c}.

The equality in (5.34) thus follows if ŝL(1) = ∞. That is, if

N(t) − t < sup
y≥0

{N(y) − y} for all finite t.

Let W = supy≥0{N(y) − y}. Pyke (1959, pages 570-571) showed that P (W ≤

x) = 0 for x ≥ 0; i.e. P (W = ∞) = 1. �

Proof of Corollary 1.3: Under the assumption G1 we see that F0(x) ∼

C1x(log(1/x))β as x → 0, so (1.5) holds with γ = 1. The claim that an =
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1/(C1n(log n)β) satisfies nF0(an) → 1 follows from Lemma 5.4 with p(x) =

x/(C1 log(1/x))β . For (i) note that ĥ1(0) = ĥ1(0+) = supt>0(N(t)/t) just as in

the proof of Corollary 1.2. (ii) again follows directly from (i) of Theorem 1.1,

and the proof of (iii) is just the same as in the proof of Corollary 1.2. �

Proof of Corollary 1.4: Under the assumption G2 we see that F0(x) ∼

C2x
1−α/(1 − α) as x → 0, so (1.5) holds with γ = 1 − α. The claim that

an = {(1−α)/(nC2)}
1/(1−α) satisfies nF0(an) → 1 follows from Lemma 5.4 with

p(x) = ((1 − α)x/C2)
1/(1−α). For (i) note that

ĥ1−α(0) = ĥ1−α(0+) = sup
t>0

(N(t1−α)/t) = sup
s>0

(N(s)/s1/(1−α))

much as in the proof of Corollary 1.2. (ii) and (iii) follow directly from (i) and

(ii) of Theorem 1.1. �

Proof of Proposition 1.5: The part of the proposition with γ = 1 follows from

Pyke (1959, pages 570-571); this is closely related to a classical result of Daniels

(1945) for the empirical distribution function; see e.g. Shorack and Wellner

(1986, Theorem 9.1.2, page 345).

The proof for the case γ < 1 proceeds much along the lines of Mason (1983,

pages 103–105). Fix x > 0 and γ < 1. We aim at establishing an expression for

the distribution function of Yγ ≡ sups>0(N(s)/s1/γ) at x > 0. First, observe that

P (Yγ ≤ x) = P

(
sup
s>0

{
N(s)

s1/γ

}
≤ x

)

= P (N(t) ≤ U(t) for all t > 0)(5.35)

where the function U(t) = xt1/γ . For j ∈ N let tj := (j/x)γ , and note that

t1 < t2 < . . . and U(tj) = j.

Define sets B and C by

B ≡ [N(tk) 6= k ; for all k ≥ 1] and C ≡ [N(s) > U(s) ; for some s > 0].

Then P (B ∩ C) = 0 as a consequence of the following argument: Suppose that

there exists some t > 0 and k ∈ N such that k = N(t) > U(t) and N(ti) 6= i, for all

i ≥ 1. It then follows that tk > t, for otherwise it follows that k = U(tk) ≤ U(t),

as U(·) is increasing, which is a contradiction. Therefore, tk > t implies that

N(tk) > N(t) = k, as N(·) is non–decreasing while N(tk) = k is disallowed,

by hypothesis. Hence, N(ti) > i holds true for all i ≥ k, for otherwise there
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would exist some j ≥ k such that N(tj) = j, since N(·) is a counting process.

Therefore, for each i ≥ k we have that N(s) ≥ i + 1 holds for all ti ≤ s ≤ ti+1

and, consequently, that N(s) ≥ U(s) holds for all s ≥ tk. This implies that

B ∩ C ⊆ [lim infs→∞{N(s)/s1/γ} ≥ x] and therefore P (B ∩ C) = 0, since the

SLLN implies that N(s)/s1/γ → 0 holds almost surely, for fixed γ < 1. We thus

conclude that P (B ∩ C) = 0.

We conclude that P (C) = P (C ∩ Bc). Furthermore, since U is a strictly

increasing function, and since N has jumps at the points {tk} with probability

zero, we also find that P (C ∩ Bc) = P (Bc). Finally, partition Bc as Bc =

∪∞
k=1Ak for the disjoint sets Ak ≡ [N(tk) = k, N(tj) 6= j for all 1 ≤ j < k], k ≥ 1.

Combining all arguments above, we conclude that

P (Yγ ≤ x) = 1 − P (C) = 1 −

∞∑

k=1

P (Ak)

where P (A1) = P (N(t1) = 1) = p(t1; 1), and, for k ≥ 2, P (Ak) may be written

as

P (N(tk) = k) − P ({N(tk) = k} ∩ {N(ti) 6= i, i < k}c)

= P (N(tk) = k) −
k−1∑

j=1

P (N(tk) = k, N(tj) = j, N(ti) 6= i, i < j)

= P (N(tk) = k) −

k−1∑

j=1

P (N(tk) − N(tj) = k − j)P (N(tj) = j, N(ti) 6= i, i < j).

The result follows. �

Appendix B: Definitions from Convex Analysis

The epigraph (hypograph) of a function f from a subset S of R
d to [−∞,+∞]

is the subset epi(f) (hypo(f)) of R
d+1 defined by

epi(f) = {(x, t) : x ∈ S, t ∈ R, t ≥ f(x)},

hypo(f) = {(x, t) : x ∈ S, t ∈ R; t ≤ f(x)}.

The function f is convex if epi(f) is a convex set. The effective domain of a

convex function f on S is

dom(f) = {x ∈ R
d : (x, t) ∈ epi(f) for some t} = {x ∈ R

d : f(x) < ∞}.
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The t−sublevel set of a convex function f is the set Ct = {x ∈ dom(f) :

f(x) ≤ t}, and the t−superlevel set of a concave function g is the set St = {x ∈

dom(g) : g(x) ≥ t}. The sets Ct, St are convex. The convex hull of a set S ⊂ R
d,

denoted by conv(S), is the intersection of all the convex sets containing S.

A convex function f is said to be proper if its epigraph is non-empty and

contains no vertical lines; i.e. if f(x) < +∞ for at least one x and f(x) > −∞

for every x. Similarly, a concave function g is proper if the convex function −g is

proper. The closure of a concave function g, denoted by cl(g), is the pointwise

infimum of all affine functions h ≥ g. If g is proper, then

cl(g)(x) = lim sup
y→x

g(y).

For every proper convex function f there exists closed proper convex function

cl(f) such that epi(cl(f)) ≡ cl(epi(f)). The conjugate function g∗ of a concave

function g is defined by

g∗(y) = inf{〈x, y〉 − g(x) : x ∈ R
d},

and the conjugate function f∗ of a convex function f is defined by

f∗(y) = sup{〈x, y〉 − f(x) : x ∈ R
d}.

If g is concave, then f = −g is convex and f has conjugate f∗(y) = −g∗(−y).

A complete non-decreasing curve is a subset of R
2 of the form

Γ = {(x, y) : x ∈ R, y ∈ R, ϕ−(x) ≤ y ≤ ϕ+(x)}

for some non-decreasing function ϕ from R to [−∞,+∞] which is not everywhere

infinite. Here ϕ+ and ϕ− denote the right and left continuous versions of ϕ

respectively. A vector y ∈ R
d is said to be a subgradient of a convex function f

at a point x if

f(z) ≥ f(x) + 〈y, z − z〉 for all z ∈ R
d.

The set of all subgradients of f at x is called the subdifferential of f at x, and

is denoted by ∂f(x).

A face of a convex set C is a convex subset B of C such that every closed

line segment in C with a relative interior point in B has both endpoints in B.

If B is the set of points where a linear function h achieves its maximum over C,

then B is a face of C. If the maximum is achieved on the relative interior of a
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line segment L ⊂ C, then h must be constant on L and L ⊂ B. A face B of this

type is called an exposed face.
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