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Abstract

We study and compare three estimators of a discrete monotone distribution: (a)
the (raw) empirical estimator; (b) the “method of rearrangements” estimator; and (c)
the maximum likelihood estimator. We show that the maximum likelihood estimator
strictly dominates both the rearrangement and empirical estimators in cases when
the distribution has intervals of constancy. For example, when the distribution is
uniform on {0, . . . , y}, the asymptotic risk of the method of rearrangements estimator
(in squared ℓ2 norm) is y/(y + 1), while the asymptotic risk of the MLE is of order
(log y)/(y + 1). For strictly decreasing distributions, the estimators are asymptotically
equivalent.

1 Introduction

This paper is motivated in large part by the recent surge of acitivity concerning “method
of rearrangement” estimators for nonparametric estimation of monotone functions: see, for
example, Fougères (1997), Dette and Pilz (2006), Dette et al. (2006), Chernozhukov et al.
(2009) and Anevski and Fougères (2007). Most of these authors study continuous settings
and often start with a kernel type estimator of the density, which involves choices of a kernel
and of a bandwidth. Our goal here is to investigate method of rearrangement estimators and
compare them to natural alternatives (including the maximum likelihood estimators with
and without the assumption of monotonicity) in a setting in which there is less ambiguity in
the choice of an initial or “basic” estimator, namely the setting of estimation of a monotone
decreasing mass function on the non-negative integers N = {0, 1, 2, . . .}.

Suppose that p = {px}x∈N is a probability mass function; i.e. px ≥ 0 for all x ∈ N

and
∑

x∈N
px = 1. Our primary interest here is in the situation in which p is monotone

decreasing: px ≥ px+1 for all x ∈ N. The three estimators of p we study are:

(a). the (raw) empirical estimator,

(b). the method of rearrangement estimator,

(c). the maximum likelihood estimator.
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Notice that the empirical estimator is also the maximum likelihood estimator when no shape
assumption is made on the true probability mass function.

Much as in the continuous case our considerations here carry over to the case of estimation
of unimodal mass functions with a known (fixed) mode; see e.g. Fougères (1997), Birgé
(1987), and Alamatsaz (1993). For two recent papers discussing connections and trade-
offs between discrete and continuous models in a related problem involving nonparametric
estimation of a monotone function, see Banerjee et al. (2009) and Maathuis and Hudgens
(2009).

Distributions from the monotone decreasing family satisfy ∆px ≡ px+1 − px ≤ 0 for all
x ∈ N, and may be written as mixtures of uniform mass functions

px =
∑

y≥0

1

y + 1
1{0,...,y}(x) qy. (1.1)

Here, the mixing distribution q may be recovered via

qx = −(x + 1)∆px, (1.2)

for any x ∈ N.

Remark 1.1. From the form of the mass function, it follows that px ≤ 1/(x + 1) for
all x ≥ 0.

Suppose then that we observe X1, X2, . . . , Xn i.i.d. random variables with values in N

and with a monotone decreasing mass function p. For x ∈ N, let

p̂n,x ≡ n−1
n∑

i=1

1{x}(Xi)

denote the (unconstrained) empirical estimator of the probabilities px. Clearly, there is no
guarantee that this estimator will also be monotone decreasing, especially for small sample
size. We next consider two estimators which do satisfy this property: the rearrangement
estimator and the maximum likelihood estimator (MLE).

For a vector w = {w0, . . . , wk}, let rear(w) denote the reverse-ordered vector such that
w′ = rear(w) satisfies w′

0 ≥ w′
1 ≥ . . . ≥ w′

k. The rearrangement estimator is then simply
defined as

p̂R
n = rear(p̂n).

We can also write p̂R
n,x = sup{u : Qn(u) ≤ x}, where Qn(u) ≡ #{x : p̂n,x ≥ u}.

To define the MLE we again need some additional notation. For a vector w = {w0, . . . , wk},
let gren(w) be the operator which returns the vector of the k + 1 slopes of the least concave
majorant of the points

{(
j,

j∑

j=0

wi

)
: j = −1, 0, . . . , k

}
.
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Here, we assume that
∑−1

j=0 wj = 0. The MLE, also known as the Grenander estimator, is
then defined as

p̂G
n = gren(p̂n).

Thus, p̂G
n,x is the left derivative at x of the least concave majorant (LCM) of the empirical

distribution function Fn(x) = n−1
∑n

i=1 1[0,x](Xi) (where we include the point (−1, 0) to find
the left derivative at x = 0). Therefore, by definition, the MLE is a vector of local averages
over a partition of {0, . . . , max{X1, . . . , Xn}}. This partition is chosen by the touchpoints
of the LCM with Fn. It is easily checked that p̂G

n corresponds to the isotonic estimator for
multinomial data as described in Robertson et al. (1988), pages 7–8 and 38–39.

We begin our discussion with two examples: in the first, p is the uniform distribution,
and in the second p is strictly monotone decreasing. To compare the three estimators, we
consider several metrics: the ℓk norm for 1 ≤ k ≤ ∞ and the Hellinger distance. Recall that
the Hellinger distance between two mass functions is given by

H2(p, p̃) = 2−1

∫
[
√

p −
√

p̃]2dµ = 2−1
∑

x≥0

[
√

px −
√

p̃x]
2,

while the ℓk metrics are defined as

||p − p̃||k =

{ (∑
x≥0 |px − p̃x|k

)1/k
1 ≤ k < ∞,

supx≥0 |px − p̃x| k = ∞.

In the examples, we compare the Hellinger norm and the ℓ1 and ℓ2 metrics, as the behaviour
of these differs the most.

Example 1. Suppose that p is the uniform distribution on {0, . . . , 5}. For n = 100 in-
dependent draws from this distribution we observe p̂n = (0.20, 0.14, 0.11, 0.22, 0.15, 0.18).
Then p̂R

n = (0.22, 0.20, 0.18, 0.15, 0.14, 0.11), and the MLE may be calculated as p̂G
n =

(0.20, 0.16, 0.16, 0.16, 0.16, 0.16). The estimators are illustrated in Figure 1 (left). The dis-
tances of the estimators from the true mass function p are given in Table 1 (left). The
maximum likelihood estimator p̂G

n is superior in all three metrics shown. To explore this
relationship further, we repeated the estimation procedure for 1000 Monte Carlo samples of
size n = 100 from the uniform distribution. Figure 2 (left) shows boxplots of the metrics for
the three estimators. The figure shows that here the rearrangement and empirical estimators
have the same behaviour; a relationship which we establish rigorously in Theorem 2.1.

Example 2. Suppose that p is the geometric distribution with px = (1 − θ)θx for x ∈ N

and with θ = 0.75. For n = 100 draws from this distribution we observe p̂n, p̂R
n and p̂G

n

as shown in Figure 1 (right). The distances of the estimators from the true mass function
p are given in Table 1 (right). Here, p̂n is outperformed by p̂G

n and p̂R
n in all the metrics,

with p̂R
n performing better in the ℓ1 and ℓ2 metrics, but not in the Hellinger distance. These

relationships appear to hold true in general, see Figure 2 (left) for boxplots of the metrics
obtained through Monte Carlo simulation.
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Figure 1: Illustration of MLE and monotone rearrangement estimators: empirical propor-
tions (black dots), monotone rearrangement estimator (dashed line), MLE (solid line), and
the true mass function (grey line). Left: the true distribution is the discrete uniform; and
right: the true distribution is the geometric distribution with θ = 0.75. In both cases a
sample size of n = 100 was observed.

Table 1: Distances between true p and estimators

Example 1 Example 2

H(p̃, p) ||p̃ − p||2 ||p̃ − p||1 H(p̃, p) ||p̃ − p||2 ||p̃ − p||1
p̃ = p̂n 0.08043 0.09129 0.2 0.1641 0.07425 0.2299
p̃ = p̂R

n 0.08043 0.09129 0.2 0.1290 0.06115 0.1821
p̃ = p̂G

n 0.03048 0.03651 0.06667 0.09553 0.06302 0.1887

The above examples illustrate our main conclusion: the MLE preforms better when the
true distribution p has intervals of constancy, while the MLE and rearrangement estimators
are competitive when p is strictly monotone. Asymptotically, it turns out that the MLE is
superior if p has any periods of constancy, while the empirical and rearrangement estimators
are equivalent. However, if p is strictly monotone, then all three estimators have the same
asymptotic behaviour.

Both the MLE and monotone rearrangement estimators have been considered in the
literature for the decreasing probability density function. The MLE, or Grenander estimator,
has been studied extensively, and much is known about its behaviour. In particular, if the
true density is locally strictly decreasing, then the estimator converges at a rate of n1/3,
and if the true density is locally flat, then the estimator converges at a rate of n1/2, cf.
Prakasa Rao (1969); Carolan and Dykstra (1999), and the references therein for a further
history of the problem. In both cases the limiting distribution is characterized via the LCM
of a Gaussian process.

The monotone rearrangement estimator for the continuous density was introduced by

4



l1 l1 l1 l2 l2 l2 H H H

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l1 l1 l1 l2 l2 l2 H H H

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l1 l1 l1 l2 l2 l2 H H H

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l1 l1 l1 l2 l2 l2 H H H

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l1 l1 l1 l2 l2 l2 H H H

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l1 l1 l1 l2 l2 l2 H H H

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 2: Monte Carlo comparison of the estimators: boxplots of m = 1000 distances of the
estimators p̂n (white), p̂R

n (light grey) and p̂G
n (dark grey) from the truth for a sample size of

n = 100. Left: the true distribution is the discrete uniform; and right: the true distribution
is the geometric distribution with θ = 0.75.

Fougères (1997) (see also Dette and Pilz (2006)). It is found by calculating the monotone
rearrangement of a kernel density estimator (see e.g. Lieb and Loss (1997)). Fougères (1997)
shows that this estimator also converges at the n1/3 rate if the true density is locally strictly
decreasing, and it is shown through Monte Carlo simulations that it has better behaviour
than the MLE for small sample size. The latter is done by comparing the L1 metrics for
different, strictly decreasing, densities. Unlike our Example 2, the Hellinger distance is not
considered.

The outline of this paper is as follows. In Section 2 we show that all three estimators are
consistent. We also establish some small sample size relationships between the estimators.
Section 3 is dedicated to the limiting distributions of the estimators, where we show that
the rate of convergence is n1/2 for all three estimators. Unlike the continuous case, the local
behaviour of the MLE is equivalent to that of the empirical estimator when the true mass
function is strictly decreasing. In Section 4 we consider the limiting behaviour of the ℓp and
Hellinger distances of the estimators. In Section 5, we consider the estimation of the mixing
distribution q. Proofs and some technical results are given in Section 6. R code to calculate
the maximum likelihood estimator (i.e. gren(p̂G

n )) is available from the website of the first
author: (will be provided).

2 Some inequalities and consistency results

We begin by establishing several relationships between the three different estimators.

Theorem 2.1. (i). Suppose that p is monotone decreasing. Then

max{H(p̂G
n , p), H(p̂R

n , p)} ≤ H(p̂n, p), (2.3)

max
{
||p̂G

n − p||k, ||p̂R
n − p||k

}
≤ ||p̂n − p||k, 1 ≤ k ≤ ∞. (2.4)
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(ii). If p is the uniform distribution on {0, . . . , y} for some integer y, then

H(p̂n, p) = H(p̂R
n , p),

||p̂R
n − p||k = ||p̂n − p||k, 1 ≤ k ≤ ∞.

(iii). If p̂n is monotone then p̂G
n = p̂R

n = p̂n. Under the discrete uniform distribution on
{0, . . . , y}, this occurs with probability

P (p̂n,0 ≥ p̂n,1 ≥ · · · ≥ p̂n,y) →
1

(y + 1)!
as n → ∞.

If p is strictly monotone with the support of p equal to {0, . . . , y} where y ∈ N, then

P (p̂n,0 ≥ p̂n,1 ≥ · · · ≥ p̂n,y) → 1,

as n → ∞.

Let P denote the collection of all decreasing mass functions on N. For any estimator p̃n

of p ∈ P and k ≥ 1 let the loss function Lk be defined by Lk(p, p̃n) =
∑

x≥0 |p̃n,x − px|k, with
L∞(p, p̃n) = supx≥0 |p̃n,x − px|. The risk of p̃n at p is then defined as

Rk(p, p̃n) = Ep

[
∑

x≥0

|p̃n,x − px|k
]

. (2.5)

Corollary 2.2. When k = 2, and for any sample size n, it holds that

sup
P

R2(p, p̂
G
n ) ≤ sup

P
R2(p, p̂

R
n ) = sup

P
R2(p, p̂n).

Based on these results, we now make the following remarks.

1. It is always better to use a monotone estimator (either p̂R
n or p̂G

n ) to estimate a monotone
mass function.

2. If the true distribution is uniform, then clearly the MLE is the better choice.

3. If the true mass function is strictly monotone, then the estimators p̂R
n and p̂G

n should be
asymptotically equivalent. We make this statement more precise in Sections 3 and 4.
Figure 2 (right) shows that in this case p̂R

n and p̂G
n have about the same performance

for n = 100.

4. When only the monotonicity constraint is known about the true p, then, by Corol-
lary 2.2, p̂G

n is a better choice of estimator than p̂R
n .

Remark 2.3. In continuous density estimation one of the most popular measures of dis-
tance is the L1 norm, which corresponds to the ℓ1 norm on mass functions. However, for
discrete mass functions, it is more natural to consider the ℓ2 norm. One of the reasons is made
clear in the following sections (cf. Theorem 3.8, Corollaries 4.1 and 4.2, and Remark 4.4).
The ℓ2 space is the smallest space in which we obtain convergence results, without additional
assumptions on the true distribution p.
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Figure 3: Comparison of the estimators p̂n (white), p̂R
n (light grey) and p̂G

n (dark grey).

To examine more closely the case when the true distribution p is neither uniform nor
strictly monotone we turn to Monte Carlo simulations. Let pU(y) denote the uniform mass
function on {0, . . . , y}. Figure 3 shows boxplots of m = 1000 samples of the estimators for
three distributions:

(a). (top) p = 0.2pU(3) + 0.8pU(7)

(b). (centre) p = 0.15pU(3) + 0.1pU(7) + 0.75pU(11)
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(c). (bottom) p = 0.25pU(1) + 0.2pU(3) + 0.15pU(5) + 0.4pU(7)

On the left we have a small sample size of n = 20, while on the right n = 100. For each
distribution and sample size, we calculate the three estimators (the estimators p̂n, p̂R

n and
p̂G

n are shown in white, light grey and dark grey, respectively) and compute their distance
functions from the truth (Hellinger, ℓ1, and ℓ2). Note that the MLE outperforms the other
estimators in all three metrics, even for small sample sizes. It appears also that the more
regions of constancy the true mass function has, the better the relative performance of the
MLE, even for small sample size (see also Figure 2). By considering the asymptotic behaviour
of the estimators, we are able to make this statement more precise in Section 4.

All three estimators are consistent estimators of the true distribution, regardless of their
relative performance.

Theorem 2.4. Suppose that p is monotone decreasing. Then all three estimators p̂n, p̂G
n

and p̂R
n are consistent estimators of p in the sense that

ρ(p̃n, p) → 0

almost surely as n → ∞ for p̃n = p̂n, p̂
G
n and p̂R

n , whenever ρ(p̃, p) = H(p̃, p) or ρ(p̃, p) =
||p̃ − p||k, 1 ≤ k ≤ ∞.

As a corollary, we obtain the following Glivenko-Cantelli type result.

Corollary 2.5. Let F̂ R
n (x) =

∑x
y=0 p̂R

n,y and F̂ G
n (x) =

∑x
y=0 p̂G

n,y, with F (x) =
∑x

y=0 py.
Then

sup
x≥0

|F̂ R
n (x) − F (x)| → 0 and sup

x≥0
|F̂ G

n (x) − F (x)| → 0,

almost surely.

3 Limiting distributions

Next, we consider the large sample behaviour of p̂n, p̂
R
n and p̂G

n . To do this, define the
fluctuation processes Yn, Y

R
n , and Y G

n as

Yn,x =
√

n(p̂n,x − px),

Y R
n,x =

√
n(p̂R

n,x − px),

Y G
n,x =

√
n(p̂G

n,x − px).

Regardless of the shape of p, the limiting distribution of Yn is well-known. In what follows
we use the notation Yn,x →d Yn,x to denote weak convergence of random variables in R (we
also use this notation for R

d), and Yn ⇒ Y to denote that the process Yn converges weakly
to the process Y . Let Y = {Yx}x∈N be a Gaussian process on the Hilbert space ℓ2 with mean
zero and covariance operator S such that 〈S e(x), e(x′)〉 = pxδx,x′ − pxpx′, where e(x) denotes a

8



sequence which is one at location x, and zero everywhere else. The process is well-defined,
since

traceS = E
[
||Y ||22

]
=
∑

x≥0

px(1 − px) < ∞.

For background on Gaussian processes on Hilbert spaces we refer to Parthasarathy (1967).

Theorem 3.1. For any mass function p, the process Yn satisfies Yn ⇒ Y in ℓ2.

Remark 3.2. We assume that Y is defined only on the support of the mass function p.
That is, let κ = sup{x : px > 0}. If κ < ∞ then Y = {Yx}κ

x=0.

3.1 Local Behaviour

At a fixed point x there are only two possibilities for the true mass function p: either x
belongs to a flat region for p (i.e. pr = . . . = px = . . . = ps for some r ≤ x ≤ s), or p is
strictly decreasing at x: px−1 > px > px+1. In the first case the three estimators exhibit
different limiting behaviour, while in the latter all three have the same limiting distribution.
In some sense, this result is not surprising. Suppose that x is such that px−1 > px > px+1.
Then asymptotically this will hold also for p̂n : p̂n,x−k > p̂n,x > p̂n,x+k for k ≥ 1 and for
sufficiently large n. Therefore, in the rearrangement of p̂n the values at x will always stay
the same, i.e. p̂R

n,x = p̂n,x. Similarly, the empirical distribution function Fn will also be
locally concave at x, and therefore both x, x − 1 will be touchpoints of Fn with its LCM.
This implies that p̂G

n,x = p̂n,x.
On the other hand, suppose that x is such that px−1 = px = px+1. Then asymptotically

the empirical density will have random order near x, and therefore both re-orderings (either
via rearrangement or via the LCM) will be necessary to obtain p̂R

n,x and p̂G
n,x.

3.1.1 When p is flat at x.

We begin with some notation. Let q = {qx}x∈N be a sequence, and let r ≤ s be positive
integers. We define q(r,s) = {qr, qr+1, . . . , qs−1, qs} to be the r through s elements of q.

Proposition 3.3. Suppose that for some r, s ∈ N with s − r ≥ 1 the probability mass
function p satisfies pr−1 > pr = · · · = ps > ps+1. Then

(Y R
n )(r,s) →d rear(Y (r,s)),

(Y G
n )(r,s) →d gren(Y (r,s)).

The last statement of the above theorem is the discrete version of the same result in the
continuous case due to Carolan and Dykstra (1999) for a density with locally flat regions.
Thus, both the discrete and continuous settings have similar behaviour in this situation.
Figure 4 shows the exact and limiting cumulative distribution functions when p = 0.2pU(3) +
0.8pU(7) (same as in Figure 3, top) at locations x = 4 and x = 7. Note the significantly “more
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Figure 4: The limiting distributions at x = 4 (left) and at x = 7 (right) when p = 0.2pU(3) +
0.8pU(7): the limiting distributions are shown (dashed) along with the exact distributions
(solid) of Yn, Y R

n , Y G
n for n = 100 (top) and n = 1000 (bottom).

discrete” behaviour of the empirical and rearrangement estimators in comparison with the
MLE. Also note the lack of accuracy in the approximation at x = 4 when n = 100 (top
left), which is more prominent for the rearrangement estimator. This occurs because x = 4
is a boundary point, in the sense that p3 > p4, and is therefore least resilient to any global
changes in p̂n. Lastly, note that the distribution functions satisfy FY4 > FY G

4
> FY R

4
at

x = 4 while at x = 7, FY R
7

> FY G
7

> FY7 . It is not difficult to see that the relationships

Y R
4 ≥ Y G

4 ≥ Y4 and Y R
7 ≤ Y G

7 ≤ Y7 must hold from the definition of (Y R)(4,7) = rear(Y (4,7))
and (Y G)(4,7) = gren(Y (4,7)).

Proposition 3.4. Let θ = pr = . . . = ps, and let Ỹ (r,s) denote a multivariate normal
vector with mean zero and variance matrix {σi,j}s

i,j=r where

σi,j = αδi,j − α2,

for α−1 = s− r + 1. Let Z be a standard normal random variable independent of Ỹ (r,s), and
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let τ = s − r + 1. Then

gren(Y (r,s)) =d

√
θ

τ

(√
1 − θτ Z + τ gren(Ỹ (r,s))

)
.

Note that the behaviour of gren(Y (r,s)) and gren(Ỹ (r,s)) will be quite different since∑s
x=r Ỹ

(r,s)
x = 0 almost surely, but the same is not true for Y (r,s).

Remark 3.5. To match the notation of Carolan and Dykstra (1999), note that τ gren(Ỹ (r,s))
is equivalent to the left slopes at the points {1, . . . , τ}/τ of the least concave majorant of
standard Brownian bridge at the points {0, 1, . . . , τ}/τ . This random vector most closely
matches the left derivative of the least concave majorant of the Brownian bridge on [0, 1],
which is the process that shows up in the limit for the continuous case.

3.1.2 When p is strictly monotone at x.

In this situation, the three estimators p̂n,x, p̂
R
n,x and p̂G

n,x have the same asymptotic behaviour.
This is considerably different than what happens for continuous densities, and occurs because
of the inherent discreteness of the problem for probability mass functions.

Proposition 3.6. Suppose that for some r, s ∈ N with s − r ≥ 0 the probability mass
function p satisfies pr−1 > pr > . . . > ps > ps+1. Then

(Y R
n )(r,s) →d Y (r,s) in R

s−r+1,

(Y G
n )(r,s) →d Y (r,s) in R

s−r+1.

Remark 3.7. We note that the convergence results of Propositions 3.3 and 3.6 also hold
jointly. That is, convergence of the three processes (Y

(r,s)
n , (Y R

n )(r,s), (Y G
n )(r,s)) may also be

proved jointly in R
3(s−r+1).

3.2 Convergence of the Process

We now strengthen these results to obtain convergence of the processes Y R
n and Y G

n in ℓ2.
Note that the limit of Yn has already been stated in Theorem 3.1.

Theorem 3.8. Let Y be the Gaussian process defined in Theorem 3.1, with p a monotone
decreasing distribution. Define Y R and Y G as the processes obtained by the following trans-
forms of Y : for all periods of constancy of p, i.e. for all s ≥ r with s − r ≥ 1 such that
pr−1 > pr = . . . = px = . . . = ps > ps+1 let

(Y R)(r,s) = rear(Y (r,s))

(Y G)(r,s) = gren(Y (r,s)).

Then Y R
n ⇒ Y R, and Y G

n ⇒ Y G in ℓ2.

11



The two extreme cases, p strictly monotone decreasing and p equal to the uniform distri-
bution, may now be considered as corollaries. By studying the uniform case, we also study
the behaviour of Y G (via Proposition 3.4), and therefore we consider this case in detail.

Corollary 3.9. Suppose that p is strictly monotone decreasing. That is, suppose that
px > px+1 for all x ≥ 0. Then Y R

n ⇒ Y and Y G
n ⇒ Y in ℓ2.

3.2.1 The Uniform Distribution

Here, the limiting distribution Y is a vector of length y + 1 having a multivariate normal
distribution with E[Yx] = 0 and cov(Yx, Yz) = (y + 1)−1δx,z − (y + 1)−2.

Corollary 3.10. Suppose that p is the uniform probability mass function on {0, . . . , y},
where y ∈ N. Then Y R

n →d rear(Y ) and Y G
n →d gren(Y ).

0 1 2 3 4 5

b

b

b

b

b

b

b

Y0

Y1

Y2 Y3

Y4

Y5

L1

L2

L3

0 1 2 3 4 5

b

b

b

b

b

b

b

Y0

Y1

Y2 Y3

Y4

Y5

L1

Figure 5: The relationship between the limiting process Y and the least concave majorant of
its partial sums for the uniform distribution on {0, . . . , 5}. Left: the slopes of the lines L1, L2

and L3 give the values gren(Y )0, gren(Y )1 = . . . = gren(Y )4 and gren(Y )5, respectively.
Right: the discrete Brownian bridge lies entirely below zero. Therefore, its LCM is zero, and
also gren(Y ) ≡ 0. This event occurs with positive probability (see also Figure 6).

The limiting process gren(Y ) may also be described as follows. Let U(·) denote the
standard Brownian bridge process on [0, 1], and write Uk =

∑k
j=0 Yj for k = −1, . . . , y. Then

we have equality in distribution of

U = {U−1, U0, . . . , Uy−1, Uy} d
=

{
U

(
k + 1

y + 1

)
: k = −1, . . . , y

}
.

In particular we have that U−1 = Uy =
∑y

j=0 Yj = 0. Thus, the process U is a discrete
analogue of the Brownian bridge, and gren(Y ) is the vector of (left) derivatives of the least
concave majorant of {(j, Uj) : j = −1, . . . , y}. Figure 5 illustrates two different realizations
of the processes Y and gren(Y ).
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Remark 3.11. Note that if the discrete Brownian Bridge is itself convex, then the limits
Y, rear(Y ) and gren(Y ) will be equivalent. This occurs with probability

P (Y ≡ rear(Y ) ≡ gren(Y )) =
1

(y + 1)!
.

The result matches that in part (iii) of Theorem 2.1.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x=0
x=4
x=9

5 10 15
0

.1
0

.2
0

.3
0

.4
0

.5

Figure 6: Limiting distribution of the MLE for the uniform case with y = 9: marginal
cumulative distribution functions at x = 0, 4, 9 (left). The probability that gren(Y ) ≡ 0 is
plotted for different values of y (right). For y = 9, it is equal to 0.0999.

Figure 6 examines the behaviour of the limiting distribution of the MLE for several
values of x. Since this is found via the LCM of the discrete Brownian bridge, it maintains
the monotonicity property in the limit: that is, gren(Y )x ≥ gren(Y )x+1. This can easily be
seen by examining the marginal distributions of gren(Y ) for different values of x (Figure 6,
left). For each x, there is a positive probability that gren(Y )x = 0. This occurs if the discrete
Brownian bridge lies entirely below zero and then the least concave majorant is identically
zero, in which case gren(Y )x = 0 for all x = 0, . . . , y (as in Figure 5, right). The probability
of this event may be calculated exactly using the distribution function of the multivariate
normal. Figure 6 (right), shows several values for different y.

4 Limiting distributions for the metrics

In the previous section we obtained asymptotic distribution results for the three estimators.
To compare the estimators, we need to also consider convergence of the Hellinger and ℓk

metrics. Our results show that p̂R
n and p̂n are asymptotically equivalent (in the sense that

the metrics have the same limit). The MLE is also asymptotically equivalent, but if and
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only if p is strictly monotone. If p has any periods of constancy, then the MLE has better
asymptotic behaviour. Heuristically, this happens because, by definition, Y G is a sequence
of local averages of Y , and averages have smaller variability. Furthermore, the more and
larger the periods of constancy, the better the MLE performs, see, in particular, Proposition
4.5 below. These results quantify, for large sample size, the observations of Figure 3.

The rate of convergence of the ℓ2 metric is an immediate consequence of Theorem 3.8.
Below, the notation Z1 ≤S Z2 denotes stochastic ordering: i.e. P (Z1 > x) ≤ P (Z2 > x) for
all x ∈ R (the ordering is strict if both inequalities are replaced with strict inequalities).

Corollary 4.1. Suppose that p is a monotone decreasing distribution. Then, for any
2 ≤ k ≤ ∞,

√
n||p̂n − p||k = ||Yn||k →d ||Y ||k,√

n||p̂R
n − p||k = ||Y R

n ||k →d ||Y ||k,√
n||p̂G

n − p||k = ||Y G
n ||k →d ||Y G||k ≤S ||Y ||k.

If p is not strictly monotone, then ≤S may be replaced with <S. The above convergence also
holds in expectation (that is, E[||Yn||kk] → E[||Y ||kk] and so forth). Furthermore,

E
[
||Y G||22

]
≤ E

[
||Y ||22

]
=
∑

x≥0

px(1 − px),

with equality if and only if p is strictly monotone.

Convergence of the other two metrics is not as immediate, and depends on the tail
behaviour of the distribution p.

Corollary 4.2. Suppose that p is such that
∑

x≥0

√
px < ∞. Then

√
n||p̂n − p||1 = ||Yn||1 →d ||Y ||1,√

n||p̂R
n − p||1 = ||Y R

n ||1 →d ||Y ||1,√
n||p̂G

n − p||1 = ||Y G
n ||1 →d ||Y G||1 ≤S ||Y ||1.

If p is not strictly monotone, then ≤S may be replaced with <S. The above convergence also
holds in expectation, and

E[||Y G||1] ≤ E[||Y ||1] =

√
2

π

∑

x≥0

√
px(1 − px),

with equality if and only if p is strictly monotone.

Convergence of the Hellinger distance requires an even more stringent condition.
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Corollary 4.3. Suppose that κ = sup{x : px > 0} < ∞. Then

nH2(p̂n, p) →d
1

8

κ∑

x=0

Y 2
x

px

nH2(p̂R
n , p) →d

1

8

κ∑

x=0

Y 2
x

px

nH2(p̂G
n , p) →d

1

8

κ∑

x=0

(Y G
x )2

px

≤S
1

8

κ∑

x=0

Y 2
x

px

.

If p is not strictly monotone, then ≤S may be replaced with <S. The distribution of∑κ
x=0 Y 2

x /px is chi-squared with κ degrees of freedom. The above convergence also holds
in expectation, and

E

[
κ∑

x=0

(Y G
x )2

px

]
≤ E

[
κ∑

x=0

Y 2
x

px

]
= κ,

with equality if and only if p is strictly monotone.

Remark 4.4. We note that if
∑

x≥0

√
px = ∞, then

∑
x≥0 |Yx| = ∞ almost surely, and if

κ = ∞, then
∑

x≥0 Y 2
x /px is also infinite almost surely. This implies that for the empirical

and rearrangement estimators, the conditions in Corollaries 4.2 and 4.3 are also necessary
for convergence. The same is true for the Grenander estimator, when the true distribution
is strictly decreasing.

Proposition 4.5. Let p be a decreasing distribution, and write it in terms of its intervals
of constancy. That is, let

px = θi if x ∈ Ci,

where where θi > θi+1 for all i = 1, 2, . . ., and where {Ci}i≥1 forms a partition of N. Then

E

[
∑

x≥0

(Y G
x )2

]
=

∑

i≥1

|Ci|∑

j=1

θi

(
1

j
− θi

)
.

Also, if κ = sup{x : px > 0} < ∞, then

E

[
κ∑

x=0

(Y G
x )2

px

]
=

∑

i≥1

|Ci|∑

j=1

(
1

j
− θi

)
.

This result allows us to explicitly calculate exactly how much “better” the performance
of the MLE is, in comparison to Y and Y R. With R–valued random variables, it is standard
to compare the asymptotic variance to evaluate the relative efficiency of two estimators. We,

15



on the other hand, are dealing with R
N–valued processes. Consider some process W ∈ R

N,
and let ΣW denote its covariance matrix (of size N×N). Then the trace norm of ΣW is equal
to the expected squared ℓ2 norm of W ,

E[||W ||22] = ||ΣW ||trace =
∑

i≥1

λi,

where {λi}i≥1 denotes the eigenvalues of ΣW . Therefore, Corollary 4.1 tells us that, asymp-
totically, Y G is more efficient than Y R and Y , in the sense that

||ΣY G ||trace ≤ ||ΣY R||trace = ||ΣY ||trace,

with equality if and only if p is strictly decreasing. Furthermore, Proposition 4.5 allows us
to calculate exactly how much more efficient Y G is for any given mass function p.

Suppose that p has exactly one period of constancy on r ≤ x ≤ s, and let τ = s−r+1 ≥ 2.
Further, suppose that px = θ∗ for r ≤ x ≤ s. Then

E
[
||Y R||22

]
− E

[
||Y G||22

]
= E

[
||Y ||22

]
− E

[
||Y G||22

]

= θ∗

(
τ −

τ∑

i=1

1

i

)
.

In particular, if p is the uniform distribution on {0, . . . , y}, then we find that E
[
||Y R||22

]
=

y/(y + 1), whereas E
[
||Y G||22

]
behaves like log y/(y + 1), and is much smaller.

Note that if p is strictly monotone, then we obtain

E

[
∑

x≥0

(Y G
x )2

]
=
∑

i≥1

θi(1 − θi) = E

[
∑

x≥0

Y 2
x

]
,

as required. Also, if p is the uniform probability mass function on {0, . . . , y}, we conclude
that

E

[
y∑

x=0

gren(Y )2
x

px

]
=

y∑

i=1

1

i + 1
,

where log y − 0.5 <
∑y

i=1(i + 1)−1 < log(y + 1).
Lastly, consider a distribution with bounded support, and fix r < s where p is strictly

monotone on {r, . . . , s}. That is, we have that pr−1 > pr > . . . > ps > ps+1. Next define p̃
by p̃x = px for x < r and x > s, and p̃x =

∑s
x=r px/(s − r + 1) for x ∈ {r, . . . , s}. Then the

difference in the expected Hellinger metrics under the two distributions is

Ep

[
κ∑

x=0

(Y G
x )2

px

]
− Ep̃

[
κ∑

x=0

(Y G
x )2

p̃x

]
= τ −

τ∑

j=1

1

j

where τ = s − r + 1. Therefore, the longer the intervals of constancy in a distribution, the
better the performance of the MLE.
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Remark 4.6. From Theorem 1.6.2 of Robertson et al. (1988) it follows that for any x ≥ 0

E[(Y G
x )2] ≤ E[Y 2

x ] = px(1 − px).

This result may also be proved using the method used to show Proposition 4.5. Note that
this pointwise inequality does not hold in general for Y G replaced with Y R.

Corollaries 4.1 and 4.2 then translate into statements concerning the limiting risks of the
three estimators p̂n, p̂R

n , and p̂G
n as follows, where the risk was defined in (2.5). In particular,

we see that, asymptotically, both p̂R
n and p̂n are inadmissible, and are dominated by the

maximum likelihood estimator p̂G
n .

Corollary 4.7. For any 2 ≤ k ≤ ∞, and any p ∈ P, the class of decreasing probability
mass functions on N,

nk/2Rk(p, p̂n) → E[‖Y ‖k
k],

nk/2Rk(p, p̂
R
n ) → E[‖Y ‖k

k],

nk/2Rk(p, p̂
G
n ) → E[‖Y G‖k

k] ≤ E[‖Y ‖k
k].

The inequality in the last line is strict if p is not strictly monotone. The statements also
hold for k = 1 under the additional hypothesis that

∑
x≥0

√
p

x
< ∞.

5 Estimating the mixing distribution

Here, we consider the problem of estimating the mixing distribution q in (1.1). This may
be done directly via the estimators of p and the formula (1.2). Define the estimators of the
mixing distribution as follows

q̂n,x = −(x + 1)△p̂n,x,

q̂R
n,x = −(x + 1)△p̂R

n,x,

q̂G
n,x = −(x + 1)△p̂G

n,x.

Each of these estimators sums to one by definition, however q̂n is not guaranteed to be
positive. The main results of this section are consistency and

√
n–rate of convergence of

these estimators.

Theorem 5.1. Suppose that p is monotone decreasing and satisfies
∑

x≥0 xpx < ∞. Then

all three estimators q̂n, q̂G
n and q̂R

n are consistent estimators of q in the sense that

ρ(q̃n, q) → 0

almost surely as n → ∞ for q̃n = q̂n, q̂
G
n and q̂R

n , whenever ρ(q̃, q) = H(q̃, q) or ρ(q̃, q) =
||q̃ − q||k, 1 ≤ k ≤ ∞.
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To study the rates of convergence we define the the fluctuation processes Zn, Z
R
n , and ZG

n

as

Zn,x =
√

n(q̂n,x − qx),

ZR
n,x =

√
n(q̂R

n,x − qx),

ZG
n,x =

√
n(q̂G

n,x − qx),

with limiting processes defined as

Zx = −(x + 1)(Yx+1 − Yx),

ZR
x = −(x + 1)(Y R

x+1 − Y R
x ),

ZG
x = −(x + 1)(Y G

x+1 − Y G
x ).

Theorem 5.2. Suppose that p is such that κ = sup{x ≥ 0 : px > 0} < ∞. Then Zn ⇒
Z, ZR

n ⇒ ZR and ZG
n ⇒ ZG. Furthermore, for any k ≥ 1, ||Zn||k →d ||Z||k, ||ZR

n ||k →d ||ZR||k
and ||ZG

n ||k →d ||ZG||k, and these convergences also hold in expectation. Also, nH2(q̂n, q) →d∑k
x=0 Z2

x/qx, nH2(q̂n, q) →d

∑k
x=0(Z

R
x )2/qx and nH2(q̂n, q) →d

∑k
x=0(Z

G
x )2/qx, and these

again also hold in expectation.

As before, we have asymptotic equivalence of all three estimators if p is strictly decreasing
(cf. Corollary 3.9). To determine the relative behaviour of the estimators q̂R

n and q̂G
n we turn

to simulations. Since q̂n is not guaranteed to be a probability mass function (unlike the other
two estimators), we exclude it from further consideration.

In Figure 7, we show boxplots of m = 1000 samples of the distances ℓ1(q̃, q), ℓ2(q̃, q) and
H(q̃, q) for q̃ = q̂R

n (light grey) and q̃ = q̂G
n (dark grey) with n = 20 (left), n = 100 (centre)

and n = 1000 (right). From top to bottom the true distributions are

(a) p = pU(5),
(b) p = 0.2pU(3) + 0.8pU(7),
(c) p = 0.25pU(1) + 0.2pU(3) + 0.15pU(5) + 0.4pU(7), and
(d) p is geometric with θ = 0.75.

We can see that q̂G
n has better performance in all metrics, except for the case of the strictly

decreasing distribution. As before, the flatter the true distribution is, the better the relative
performance of q̂G

n . Notice that by Corollary 3.9 and Theorem 5.2 the asymptotic behaviour
(i.e. rate of convergence and limiting distributions) of the l2 norm of qG

n and qR
n should be

the same if p is strictly decreasing.

Remark 5.3. For κ = ∞, the process {xYn,x : x ∈ N} is known to converge weakly in ℓ2

if and only if
∑

x≥0 x2px < ∞, while the convergence is know to hold in ℓ1 if and only if∑
x≥0 x

√
px < ∞; see e.g. Araujo and Giné (1980, Exercise 3.8.14, page 205). We therefore

conjecture that ZR
n and ZG

n converge weakly to ZR and ZG in ℓ2 (resp. ℓ1) if and only if∑
x≥0 x2px < ∞

(
resp.

∑
x≥0 x

√
px < ∞

)
.
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6 Proofs

Proof of Remark 1.1. This bound follows directly from the definition of p, since

px =
∑∞

y>x(y + 1)qy ≤ (x + 1)−1
∑

y≥x qy ≤ (x + 1)−1.

In the next lemma, we prove several useful properties of both the rearrangement and
Grenander operators.

Lemma 6.1. Consider two sequences p and q with support S, and let ϕ(·) denote either the
Grenander or rearrangement operator. That is, ϕ(p) = gren(p) or ϕ(p) = rear(p).

1. For any increasing function f : S 7→ R,

∑

x∈S

fxϕ(p)x ≤
∑

x∈S

fxpx. (6.6)

2. Suppose that Ψ : R 7→ R+ is a non–negative convex function such that Ψ(0) = 0, and
that q is decreasing. Then,

∑

x∈S

Ψ(ϕ(p)x − qx) ≤
∑

x∈S

Ψ(px − qx). (6.7)

3. Suppose that |S| is finite. Then ϕ(p) is a continuous function of p.

Proof. 1. Suppose that S = {s1, . . . , s2}, where it is possible that s2 = ∞. Then it is clear
from the properties of the rearrangement and Grenander operators that

s2∑

x=s1

ϕ(p)x =

s1∑

x=s2

px and

y∑

x=s1

ϕ(p)x ≥
y∑

x=s1

px,

for y ∈ S. These inequalities immediately imply (6.6), since, by summation by parts,

s2∑

x=s1

fxpx =

s2∑

x=s1

x−1∑

y=s1

(fy+1 − fy)px + fs1

s2∑

x=s1

px

=

s2∑

y=s1

(fy+1 − fy)

s2∑

x=y+1

px + fs1

s2∑

x=s1

px,

and f is an increasing function.

2. For the Grenander estimator this is simply Theorem 1.6.1 in Robertson et al. (1988).
For the rearrangement estimator, we adapt the proof from Theorem 3.5 in Lieb and Loss
(1997). We first write Ψ = Ψ+ + Ψ−, where Ψ+(x) = Ψ(x) for x ≥ 0 and Ψ−(x) = Ψ(x)
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for x ≤ 0. Now, since Ψ+ is convex, there exists an increasing function Ψ′
+ such that

Ψ+(x) =
∫ x

0
Ψ′

+(t)dt. Now,

Ψ+(px − qx) =

∫ px

qx

Ψ′
+(px − s)ds =

∫ ∞

0

Ψ′
+(px − s)I[qx≤s]ds.

Applying Fubini’s theorem, we have that

∑

x∈S

Ψ+(px − qx) =

∫ ∞

0

{
∑

x∈S

Ψ′
+(px − s)I[qx≤s]

}
ds.

Now, the function I[qx≤s] is an increasing function of x, and for ϕ(p) = rear(p), for each
fixed s we have that ϕ(Ψ′

+(p − s))x = Ψ′
+(ϕ(p)x − s), since Ψ′

+ is an increasing function.
Therefore, applying (6.6), we find that the last display above is bounded below by

∫ ∞

0

{
∑

x∈S

Ψ′
+(ϕ(p)x − s)I[qx≤s]

}
ds =

∑

x∈S

Ψ+(ϕ(p)x − qx).

The proof for Ψ− is the same, except that here we use the identity

Ψ−(px − qx) =

∫ ∞

0

Ψ′
−(px − s)

{
−I[qx≥s]

}
ds.

3. Since |S| is finite, we know that p is a finite vector, and therefore it is enough to prove
continuity at any point x ∈ S. For ϕ = rear this is a well–known fact. Next, note that
if pn → p, then the partial sums of pn also converge to the partial sums of p. From
Lemma 2.2 of Durot and Tocquet (2003), it follows that the least concave majorant of
pn converges to the least concave majorant of p, and hence, so do their differences. Thus
ϕ(pn)x → ϕ(p)x.

6.1 Some inequalities and consistency results: proofs

Proof of Theorem 2.1. (i). Choosing Ψ(t) = |t|k in (6.7) of Lemma 6.1 proves (2.4). To
prove (2.3) recall that

H2(p̃, p) = 1 −
∑

x≥0

√
p̃xpx.

By Hardy et al. (1952), Theorem 368, page 261, (or Theorem 3.4 in Lieb and Loss (1997))
it follows that ∑

x≥0

√
p̂n,xpx ≤

∑

x≥0

√
p̂R

n,xpx,
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which proves the result for the rearrangement estimator. It remains to prove the same
for the MLE. Let {Bi}i≥1 denote a partition of N. By definition,

p̂G
n,x =

1

|Bi|
∑

x∈Bi

p̂n,x, x ∈ Bi

for some partition. Jensen’s inequality now implies that

∑

x∈Bi

√
p̂n,x ≥

∑

x∈Bi

√
p̂G

n,x,

which completes the proof.

(ii). is obvious.

(iii). The second statement is obvious in light of (2.4) with k = ∞. To see that the proba-
bility of monotonicity of the p̂n,x’s converges to 1/(y +1)! under the uniform distribution,
note that the event in question is that same as the event that the components of the
vector (

√
n(p̂n,x − (y + 1)−1) : x ∈ {0, . . . , y}} are ordered in the same way. This vector

converges in distribution to Z ∼ Ny+1(0, Σ) where Σ = diag(1/(y + 1)) − (y + 1)−211T ,
and the probability P (Z1 ≥ Z2 ≥ · · · ≥ Zy+1) = 1/(y + 1)! since the components of Z are
exchangeable.

Proof of Corollary 2.2. For any p ∈ P, we have that

nR2(p, p̂
R
n ) ≤ nR2(p, p̂n) = 1 −

∑

x≥0

p2
x ≤ 1.

Plugging in the discrete uniform distribution on {0, . . . , κ}, and applying part (ii) of Theorem
2.1, we find that

nR2(p, p̂
R
n ) = nR2(p, p̂n) = 1 − (κ + 1)−1.

Thus, for any ǫ > 0, there exists a p ∈ P, such that

nR2(p, p̂
R
n ) = nR2(p, p̂n) ≥ 1 − ǫ.

Since the upper bound on both risks is one, the result follows.

Proof of Theorem 2.4. The results of this theorem are quite standard, and we provide a
proof only for completeness. Let Fn denote the empirical distribution function and F the
cumulative distribution function of the true distribution p. For any K (large), we have that
for any x > K,

|p̂n,x − px| ≤ p̂n,x + px

≤ (1 − Fn(K)) + (1 − F (K))

≤ |Fn(K) − F (K)| + 2(1 − F (K)).
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Fix ǫ > 0, and choose K large enough so that (1 − F (K)) < ǫ/6. Next, there exists an n0

sufficiently large so that sup0≤x≤K |p̂n,x −px| < ǫ/3 and |Fn(K)−F (K)| < ǫ/3 for all n ≥ n0

almost surely. Therefore, for n ≥ n0

sup
x≥0

|p̂n,x − px| ≤ sup
0≤x≤K

|p̂n,x − px| + |Fn(K) − F (K)| + 2(1 − F (K))

< ǫ.

This shows that ||p̂n − p||k → 0 almost surely for k = ∞. A similar approach proves the
result for any 1 ≤ k < ∞. Convergence of H(p̂n, p) follows since for mass functions H(p, q) ≤√

||p − q||1 (see e.g. Le Cam (1969), page 35). Consistency of the other estimators, p̂R
n and

p̂G
n now follows from the inequalities of Theorem 2.1.

Proof of Corollary 2.5. Note that by virtue of the estimators, we have that F̂ R
n (x) ≥ Fn(x)

and F̂ G
n (x) ≥ Fn(x) for all x ≥ 0. Now, fix ǫ > 0. Then there exists a K such that

∑
x>K px <

ǫ/4. By the Glivenko-Cantelli lemma, there exists an n0 such that for all n ≥ n0

sup
x≥0

|Fn(x) − F (x)| < ǫ/4,

almost surely. Furthermore, by Theorem 2.4, n0 can be chosen large enough so that for all
n ≥ n0

sup
x≥0

∣∣p̂G
n,x − px

∣∣ < ǫ/4(K + 1),

almost surely. Therefore, for all n ≥ n0, we have that

sup
x≥0

|F̂ G
n (x) − F (x)| ≤

K∑

x=0

∣∣p̂G
n,x − px

∣∣ +
∑

x>K

p̂G
n,x +

∑

x>K

px

≤ ǫ/4 +
∑

x>K

p̂n,x + ǫ/4

≤ ǫ/4 +
∑

x>K

px + ǫ/4 + ǫ/4 ≤ ǫ.

The proof for the rearrangement estimator is identical.

6.2 Limiting distributions: proofs

Lemma 6.2. Let Wn be a sequence of processes in ℓk with 1 ≤ k < ∞. Suppose that

1. supn E[||Wn||kk] < ∞,

2. limm→∞ supn

∑
x≥m E[|Wn,x|k] = 0.

Then Wn is tight in ℓk.
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Proof. Note that for k < ∞, compact sets K are subsets of ℓk such that there exists a
sequence of real numbers Ax for x ∈ N and a sequence λm → 0 such that

1. |wx| ≤ Ax for all x ∈ N,

2.
∑

k≥m |wx|k ≤ λm for all m,

for all elements w ∈ K. Clearly, if the conditions of the lemma are satisfied, then for each
ǫ > 0, we have that

P

(
|Wn,x| ≤ Ax for all x ≥ 0, and

∑

x≥m

|Wn,x|k ≤ λm for all m

)
≥ 1 − ǫ

for all n. Thus, Wn is tight in ℓk.

Proof of Theorem 3.1. Convergence of the finite dimensional distributions is standard. It
remains to prove tightness in ℓ2. By Lemma 6.2 this is straightforward, since

E[||Yn||22] =
∑

x≥0

px(1 − px) and
∑

x≥m

E
[
Y 2

n,x

]
=
∑

x≥m

px(1 − px).

Throughout the remainder of this section we make extensive use of a set equality for the
least concave majorant known as the “switching relation”. Let

ŝn(a) = inf {k ≥ −1 : Fn(k) − a(k + 1) = sup{Fn(y) − a(y + 1)}}
≡ argmaxL

k≥−1{Fn(k) − a(k + 1)} (6.8)

denote the first time that the process Fn(y) − a(y + 1) reaches its maximum. Then the
following holds

{ŝn(a) < x} = {ŝn(a) ≤ x − 1/2}
= {p̂G

n,x < a}. (6.9)

For more background (as well as a proof) of this fact see, for example, Balabdaoui et al.
(2009).

Proof of Proposition 3.3. Let F denote the cumulative distribution function for the function
p. For fixed t ∈ R it follows from (6.9) that

P (Y G
n,x < t) = P (ŝn(px + n−1/2t) ≤ x − 1/2)

= P (argmaxL
y≥−1{Zn(y)} ≤ x − 1/2) (6.10)

where Zn(y) = n1/2
Fn(y)−(n1/2px+t)(y+1). Note that for any constant c, argmaxL(Zn(y)) =

argmaxL(Zn(y) + c), and therefore we instead take

Zn(y) = n1/2(Fn(y) − Fn(r − 1)) − (n1/2px + t)(y − r + 1)

= Vn(y) + Wn(y) − t(y − r + 1),
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where

Vn(y) =
√

n ((Fn(y) − Fn(r − 1)) − (F (y) − F (r − 1))) ,

n−1/2Wn(y) = (F (y) − F (r − 1)) − px(y − r + 1)

=

{
= 0 for r − 1 ≤ y ≤ s,
< 0 otherwise.

Let U denote the standard Brownian bridge on [0, 1]. It is well-known that Vn(y) ⇒ U(F (y))−
U(F (r − 1)). Also, Wn(y) → ∞ for y /∈ {r − 1, . . . , s}, and it is identically zero otherwise.
It follows that the limit of (6.10) is

P
(
argmaxL

r−1≤y≤s{U(F (y)) − U(F (r − 1)) − t(y − r + 1)} ≤ x − 1/2
)

= P
(
argmaxL

r−1≤y≤s{U(F (y)) − U(F (r − 1)) − t(y − r + 1)} < x
)
,

for any x ∈ {r, . . . , s}. Note that the process

{U(F (x)) − U(F (r − 1)), x = r − 1, . . . , s} =d

{
x∑

j=r

Yj , x = r − 1, . . . , s

}
,

and therefore the probability above is equal to

P
(
gren(Y (r,s))x < t

)

for x ∈ {r, . . . , s}. Since the half-open intervals [a, b) are convergence determining, this proves
pointwise convergence of Y G

n,x to gren(Y )x.
To show convergence of the rearrangement estimator fluctuation process, note that for

sufficiently large n we have that p̂n,r−k > p̂n,x > p̂n,s+k for all x ∈ {r, . . . , s} and k ≥ 1.
Therefore, (p̂R

n )(r,s) = rear((p̂n)(r,s)) and furthermore, since px is constant here, (Y R
n )(r,s) =

rear(Y
(r,s)
n ). The result now follows from the continuous mapping theorem.

Proof of Proposition 3.4. To simplify notation, let Wm = U(F (m− r +1))−U(F (r−1)) for
m = 0, . . . , s−r+1. Also, let θ = pr = . . . = ps and then Gm = F (m−r+1)−F (r−1) = θm.
Write

Wm =
Gm

Gs
Ws +

{
Wm − Gm

Gs
Ws

}
=

m

s̄
Ws +

{
Wm − m

s̄
Ws

}
,

where s̄ = s − r + 1. Let W̃m = Wm − mWs/s̄. Then W̃0 = W̃s̄ = 0 and some calculation

shows that E[W̃m] = 0 and

cov(W̃m, W̃m′) = θs̄

{
min

(
m

s̄
,
m′

s̄

)
− m

s̄

m′

s̄

}
.
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Also, cov(W̃m, Ws) = 0. Let Z be a standard normal random variable independent of the
standard Brownian bridge U. We have shown that

Wm =d
m

s̄

√
θs̄(1 − θs̄) Z +

√
θs̄U

(m

s̄

)
.

Next, let Ỹm = U
(

m
s̄

)
−U

(
m−1

s̄

)
for m = 1, . . . , s̄. The vector Ỹ = (Ỹ1, . . . , Ỹs̄) is multivariate

normal with mean zero and cov(Ỹm, Ỹm′) = δm,m′/s̄ − 1/(s̄)2. To finish the proof, note that

gren(c + Ỹ ) = c + gren(Ỹ ) for any constant c.

Proof of Proposition 3.6. The claim for the rearrangement estimator follows directly from
Theorem 2.4 for k = ∞. To prove the second claim, we will show that Y G

n,x − Yn,x =√
n(p̂G

n,x − p̂n,x)
p→ 0. To do this, we again use the switching relation (6.9).

Fix ǫ > 0. Then

P (Y G
n,x − Yn,x ≥ ǫ) = P (p̂G

n,x ≥ p̂n,x + n−1/2ǫ)

= P (ŝn(p̂n,x + n−1/2ǫ) ≥ x − 1/2)

= P (argmaxL
y≥−1Z̃n(y − x) ≥ x − 1/2)

= P (argmaxL
h≥−x−1Z̃n(h) ≥ −1/2), (6.11)

where Z̃n(h) = n1/2
Fn(x+h)−(n1/2p̂n,x+t)(x+h+1). Since for any constant c, argmaxL(Z̃n(y)) =

argmaxL(Z̃n(y) + c), we instead take

Z̃n(h) = n1/2(Fn(x + h) − Fn(x − 1)) − (n1/2p̂n,x + ǫ)(h + 1)

= Un(h) + Vn(h) + Wn(h) − ǫ(h + 1),

where

Un(h) =
√

n ((Fn(x + h) − Fn(x − 1)) − (F (x + h) − F (x − 1))) ,

(h + 1)−1Vn(h) =
√

n ((Fn(x) − Fn(x − 1)) − (F (x) − F (x − 1))) ,

n−1/2Wn(h) = (F (x + h) − F (x − 1)) − px(h + 1)

=

{
= 0 for h = −1, 0,
< 0 otherwise.

Let U denote the standard Brownian bridge on [0, 1]. It is well-known that Un(h) ⇒ U(F (x+
h))−U(F (x−1)) and Vn(h) ⇒ (h+1)(U(F (x))−U(F (x−1))). Also, Wn(y) = 0 at y = −1, 0
and Wn(y) → ∞ for y /∈ {−1, 0}. Define

Z(h) = U(F (x + h)) − U(F (x − 1)) + (h + 1)(U(F (x)) − U(F (x − 1))),

and notice that Z(0) = Z(−1) = 0. It follows that the limit of (6.11) is

P
(
argmaxL

y=−1,0{Z(h) − ǫ(h + 1)} ≥ −1/2
)

= 0,
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since argmaxL
y=−1,0{Z(h) − ǫ(h + 1)} = −1. A similar argument proves that

lim
n→∞

P (Y G
n,x − Yn,x < ǫ) = 0,

showing that Y G
n,x − Yn,x = op(1) and completing the proof.

Proof of Theorem 3.8. Let ϕ denote an operator on sequences in l2. Specifically, we take
ϕ = gren or ϕ = rear. Also, for a fixed mass function p let Tp = {x ≥ 0 : px − px+1 > 0} =
{τi}i≥1. Next, define ϕp to be the local version of the ϕ operator. That is, for each i ≥ 1,
ϕp(q)x = ϕ(p(τi+1,τi+1))x for all τi + 1 ≤ x ≤ τi+1.

Fix ǫ > 0, and suppose that qn → q in ℓ2. Then there exists a K ∈ Tp and an n0 such that
supn≥n0

∑
x>K q2

n,x < ǫ/6. By Lemma 6.1, ϕp is continuous on finite blocks, and therefore it
is continuous on {0, . . . , K}. Hence, there exists a n′

0 such that for all n ≥ n′
0

K∑

x=0

(ϕp(qn)x − ϕp(q)x)
2 ≤ ǫ/3.

Applying (6.7), we find that for all n ≥ max{n0, n
′
0}

||ϕp(qn) − ϕp(q)||22 ≤
K∑

x=0

(ϕp(qn) − ϕp(q))
2 + 2

∑

x>K

ϕp(qn)2
x + 2

∑

x>K

ϕp(q)
2
x

≤ ǫ/3 + 2
∑

x>K

q2
n,x + 2

∑

x>K

q2
x < ǫ,

which shows that ϕp is continuous on ℓ2. Since Yn ⇒ Y in ℓ2, it follows, by the continu-
ous mapping theorem, that ϕp(Yn) ⇒ ϕp(Y ). However, both Y G

n and Y R
n are of the form√

n(ϕ(p̂n) − p) 6= ϕp(Yn). To complete the proof of the theorem it is enough to show that

En = ||
√

n(ϕ(p̂n) − p) − ϕp(Yn)||22,

converges to zero in L1; that is, we will show that E[En] → 0.
By Skorokhod’s theorem, there exists a probability triple and random processes Y and

Yn =
√

n(p̂n − p), such that Yn → Y almost surely in ℓ2. Fix ǫ > 0 and find K ∈ Tp such
that

∑
x>K px < ǫ/4.

Next, let T K
p = {0 ≤ x ≤ K : x ∈ Tp}, and let δ = minx∈T K

p
(px − px+1). Then, there

exists an n0 such that for all n ≥ n0

sup
x≥0

|p̂n,x − px| < δ/3, (6.12)

sup
x≥0

|
∑

0≤y≤x

ϕ(p̂n)y − F (x)| < δ/6, (6.13)

almost surely (see Corollary 2.5).
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Now, consider any m ∈ T K
p . It follows that any such m is also a touchpoint of the

operator ϕ on p̂n. Here, by touchpoint we mean that
∑m

x=0 ϕ(p̂n)x =
∑m

x=0 p̂n,x. From (6.12),
it follows that

inf
x≤m

p̂n,x > sup
x>m

p̂n,x,

which implies that m is a touchpoint for the rearrangement estimator. For the Grenander
estimator, we require (6.13). Here,

F̂ G
n (m) − F̂ G

n (m − 1) > F (m) − F (m − 1) − δ/3

= pm − δ/3

> pm+1 + δ/3

= F (m + 1) − F (m) + δ/3

≥ F̂ G
n (m + 1) − F̂ G

n (m).

Therefore, the slope of F̂ G
n changes from m to m + 1, which implies that m is a touchpoint

almost surely. Let p̂
(s,r)
n = {p̂n,s, p̂n,s+1, . . . , p̂n,r}. An important property of the ϕ operator

is if m < m′ are two touchpoints of ϕ applied to p̂n, then for all m + 1 ≤ x ≤ m′, ϕ(p̂n)x =

ϕ(p̂
(m+1,m′)
n )x. Now, since p takes constant values between the touchpoints T K

p , it follows
that

√
n(ϕ(p̂n) − p)x = ϕp(Yn)x, for all x ≤ K.

Therefore, for all n ≥ n0

En =
∑

x≥0

∣∣√n(ϕ(p̂n) − p)x − ϕp(Yn)x

∣∣2

≤
K∑

x=0

(√
n(ϕ(p̂n) − p)x − ϕp(Yn)x

)2

+ 2
∑

x>K

(√
n(ϕ(p̂n) − p)x

)2
+ 2

∑

x>K

(ϕp(Yn)x)
2

≤ 4
∑

x>K

(Yn,x)
2 ,

almost surely. It follows that

lim En ≤ 4
∑

x>K

(Yx)
2 ,

and hence

E
[
lim En

]
≤ 4E

[
∑

x>K

(Yx)
2

]
= 4

∑

x>K

px(1 − px) < ǫ.

Since En ≤ 2||Yn||22, with E[||Yn||22] ≤ 1, we may apply Fatou’s lemma so that

0 ≤ lim E[En] ≤ E
[
lim En

]
≤ ǫ.

Letting ǫ → 0 completes the proof.
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Corollaries 3.9 and 3.10 are obvious consequences of Theorem 3.8. Remark 3.11 is proved
in the following section.

6.3 Limiting distributions for metrics: proofs

Proof of Corollary 4.1. We provide the details only in the k = 2 setting. The cases when
k > 2 follow in a similar manner, since here ||x||k ≤ ||x||2 for x ∈ ℓ2.

Convergence of ||Yn||2, ||Y R
n ||2 and ||Y G

n ||2 follows from Theorems 3.1 and 3.8 by the
continuous mapping theorem. That ||Y ||2 = ||Y R||2 is obvious from the definition of Y R.
That ||Y G||2 ≤ ||Y ||2 follows from Jensen’s inequality and the definition of the gren(·)
operator, since for any r < s, gren(Y (r,s))x is equal to the average of Yy over some subset of
{r, . . . , s} containing the point x. If p is not strictly decreasing, then there exists a region,
which we denote again by {r, . . . , s}, where it is constant. Then there is positive probability
that (Y G)(r,s) is different from Y (r,s). In this case, we have that

||(Y G)(r,s)||22 < ||Y (r,s)||22,

which finishes the proof of the stochastic ordering in the third statement. Convergence in
expectation is immediate since

E[||Yn||22] =
∑

x≥0

px(1 − px),

and the same results for Y R
n , Y G

n follow by the dominated convergence theorem and the
bounds in Theorem 2.1 (i). Lastly, the bound E[||Y G||22] ≤ E[||Y ||22] with equality if and
only if p is strictly monotone follows from the stochastic ordering.

Proof of Corollary 4.2. The result of the corollary for the empirical estimator is essentially
the Borisov-Durst theorem (see e.g. Dudley (1999), Theorem 7.3.1, page 244), which states
that

sup
C∈2N

∣∣∣∣∣
∑

x∈C

Yn,x

∣∣∣∣∣⇒ sup
C∈2N

∣∣∣∣∣
∑

x∈C

Yx

∣∣∣∣∣

if
∑

x

√
px < ∞. To complete the argument note that supC∈2N |

∑
x∈C wx| = ||w||1/2 for any

sequence w such that
∑

x wx = 0 (note that the condition
∑

x

√
px < ∞ means that the

sequences Yn and Y are absolutely summable almost surely). However, the result may also
be proved by noting that the sequence Yn is tight in ℓ1 using Lemma 6.2, since

E[||Yn||1] ≤
∑

x≥0

√
px(1 − px),

∑

x≥m

E[|Yn,x|] ≤
∑

x≥m

√
px(1 − px) → 0,
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as m → ∞ under the assumption
∑

x≥0

√
px < ∞. The proof that Y G

n ⇒ Y G and Y R
n ⇒ Y R

in ℓ1 is identical to the proof of Theorem 3.8, and we omit the details. Convergence of
expectations follows since ||Yn||1 is uniformly integrable, as

E[||Yn||1I{||Yn||1>α}] ≤ E[||Yn||21]
α

=
1

α

∑

x,z

E[|Yn,x||Yn,z|]

≤ 1

α

(
∑

x≥0

√
px

)2

,

by the Cauchy-Schwarz inequality. All other details follow as in the proof of Corollary 4.1.

Proof of Corollary 4.3. If κ < ∞, then we have that

8nH2(p̂n, p) = 4n

κ∑

x=0

[
√

p̂n,x −
√

px]
2

= 4
κ∑

x=0

[
√

n(p̂n,x − px)]
2

(
√

p̂n,x +
√

px)2
,

which converges to

4

κ∑

x=0

Y 2
x

(2
√

px)2
=

κ∑

x=0

Y 2
x

px
(6.14)

by Theorem 3.1 and Theorem 2.4 for k = ∞. That this has a chi-squared distribution
with κ degrees of freedom is standard, and is shown for example, in Ferguson (1996), Theo-
rem 9. Convergence of means follows by the dominated convergence theorem from the bound
H(p, q) ≤

√
||p − q||1 (see e.g. Le Cam (1969), page 35) and Corollary 4.2. All other details

follow as in the proof of Corollary 4.1.

Proof of Remark 4.4. Suppose first that
∑

x≥0

√
px = ∞. Define P to be the probability

measure P (A) =
∑

x∈A px, and let W be the mean zero Gaussian field on ℓ2 such that
E[WxWx′] = pxδx,x′. Then we may write Y =d {Wx − pxWN}x≥0, where WN =

∑
x≥0 Wx.

Now, since
∑

x≥0 P (|Wx| ≥ √
px) = ∞, by the Borel-Cantelli lemma we have that∑

x≥0 |Wx| = ∞ almost surely. Since

∑

x≥0

|Yx| =
∑

x≥0

|Wx − pxWN|

≥
∑

x≥0

|Wx| − |WN|,

and WN is finite almost surely, it follows that
∑

x≥0 |Yx| = ∞ almost surely as well. That is,
if
∑

x≥0

√
px = ∞, then the random variable ||Y ||1 simply does not exist.
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A similar argument works for the Hellinger norm. Assume that κ = ∞. Then

∑

x≥0

Y 2
x

px

=

(
∑

x≥0

W 2
x

px

)
− W 2

N
,

and the Borel-Cantelli lemma shows that
∑

x≥0 W 2
x/px is infinite almost surely.

Lemma 6.3. Let Z1, . . . , Zk be i.i.d. N(0,1) random variables, and let ZG
i , i = 1, . . . , k

denote the left slopes of the least concave majorant of the graph of the cumulative sums∑j
i=1 Zj with j = 0, . . . , k. Let T denote the number of times that the LCM touches the

cumulative sums (excluding the point zero, but including the point k). Then

E

[
k∑

i=1

(ZG
i )2

]
= E[T ].

Proof. It is instructive to first consider some of the simple cases. When k = 1, the result is
obvious. Suppose then that k = 2. We have

T
∑k

i=1(Z
G
i )2 if

2 Z2
1 + Z2

2 Z1 > Z2

1
(

Z1+Z2√
2

)2

Z1 < Z1+Z2

2

Note that we ignore all equalities, since these occur with probability zero. It follows that

E

[
2∑

i=1

(ZG
i )2

]
= E[(Z2

1 + Z2
2)1Z1>Z2] + E

[(
Z1 + Z2√

2

)2

1
Z1<

Z1+Z2
2

]

where, by exchangeability it follows that

E[(Z2
1 + Z2

2 )1Z1>Z2] = E[(Z2
1 + Z2

2)1Z1<Z2 ]

= E[(Z2
1 + Z2

2)]P (Z1 > Z2)

= 2P (T = 2).

On the other hand, we also have that

E

[(
Z1 + Z2√

2

)2

1
Z1<

Z1+Z2
2

]
= E

[(
Z1 + Z2√

2

)2
]

P

(
Z1 <

Z1 + Z2

2

)

= 1P (T = 1),

since the random variables Z̄ = (Z1 +Z2)/2 and Z1− Z̄ are independent. The result follows.
Next, suppose that k = 3. Then we have the following.
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T
∑k

i=1(Z
G
i )2 if

(a) (b)

3 Z2
1 + Z2

2 + Z2
3 Z1 > Z2 > Z3

2
(

Z1+Z2√
2

)2

+ Z2
3

Z1+Z2

2
> Z3

Z1+Z2

2
> Z1

2 Z2
1 +

(
Z2+Z3√

2

)2

Z1 > Z2+Z3

2
Z2+Z3

2
> Z2

1
(

Z1+Z2+Z3√
3

)2
Z1+Z2+Z3

3
> Z1,

Z1+Z2

2

The choice of splitting the conditions between columns (a) and (b) is key to our argument.
Note that the LCM creates a partition of the space {1, . . . , k}, where within each subset the
slope of the LCM is constant. The number of partitions is equal to T . Here, column (a)
describes the necessary conditions on the order of the slopes on the partitions, while column
(b) describes the necessary conditions that must hold within each partition.

In the first row of the table, we find by permuting across all orderings of (123) that

E[(Z2
1 + Z2

2 + Z2
3) 1Z1>Z2>Z3 ] = E[(Z2

1 + Z2
2 + Z2

3)]P (Z1 > Z2 > Z3)

= 3P (T = 3).

Next consider T = 2. Here, by permuting (123) to (312), we find that

E

[{
Z2

1 +

(
Z2 + Z3√

2

)2
}

1
Z1>

Z2+Z3
2

1Z2+Z3
2

>Z2

]

= E

[{(
Z1 + Z2√

2

)2

+ Z2
3

}
1

Z3>
Z1+Z2

2
1Z1+Z2

2
>Z1

]
.

Note that the permutation (123) to (312) may be re-written as ({12}{3}) to ({3}{12}) which
is really a permutation on the partitions formed by the LCM. Now,

E[T1T=2] = E

[{(
Z1 + Z2√

2

)2

+ Z2
3

}
1Z1+Z2

2
>Z3

1Z1+Z2
2

>Z1

]

+ E

[{
Z2

1 +

(
Z2 + Z3√

2

)2
}

1
Z1>

Z2+Z3
2

1Z2+Z3
2

>Z2

]

= E

[{(
Z1 + Z2√

2

)2

+ Z2
3

}
1Z1+Z2

2
>Z1

]

= E

[{(
Z1 + Z2√

2

)2

+ Z2
3

}]
P

(
Z1 + Z2

2
> Z1

)

= 2P (T = 2),
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where in the penultimate line we use the fact that Z3, (Z1 + Z2)/2 and Z1 − (Z1 + Z2)/2 are
independent.

Lastly,

E

[(
Z1 + Z2 + Z3√

3

)2

1Z1+Z2+Z3
3

>Z1
1Z1+Z2+Z3

3
>

Z1+Z2
2

]

= E

[(
Z1 + Z2 + Z3√

3

)2

1Z1+Z2+Z3
3

>Z1
1

Z3>
Z1+Z2+Z3

3

]

= E

[(
Z1 + Z2 + Z3√

3

)2
]

E
[
1Z1+Z2+Z3

3
>Z1

1Z1+Z2+Z3
3

>
Z1+Z2

2

]

= 1P (T = 1)

as the variables Z = (Z1 + Z2 + Z3)/3 and {Z1 − Z, Z2 − Z, Z3 − Z} are independent.
The key to the general proof is the combination of two actions:

1. Permutations of subgroups (column (a)), and

2. independence of column (b) from the random variables
∑k

i=1(Z
G
i )2 and the indicator

functions in column (a). Note that for any k > j ≥ 1, letting Z̄ = (Z1+Z2+. . .+Zk)/k

Z1 + Z2 + . . . + Zj

j
− Z̄ =

(Z1 − Z̄) + (Z2 − Z̄) + . . . + (Zj − Z̄)

j
,

which is independent of Z̄ for any choice of j < k.

To write down the proof for any k we must first introduce some notation.

• For any 1 ≤ m ≤ k, we may create a collection P of partitions of {1, . . . , k} such that
the total number of elements in each partition is m. For example, when k = 4 and m =
2, then the elements of P are the partitions ({1}{234}), ({12}{34}) and ({123}{4}).
Furthermore, for each partition, we may write down the number of elements in each
subset of the partition. Here the sizes of the partitions are 1, 3 then 2, 2 and 3, 1.
These partitions may be grouped further by placing together all partitions such that
their sizes are unique up to order. Thus, in the above example we would put together
1, 3 and 3, 1 as one group, and the second group would be made up of 2, 2. From
each subgroup we wish to choose a representative member, and the collection of these
representatives will be denoted as τ(m). We assume that the representative τ is chosen
in such a way that the sizes of the partitions are given in increasing order. Let r1

denote the number of subgroups with size 1, and so on. Thus, for τ = ({1}{234}), we
have r1 = 1, r2 = 0, r3 = 1, . . . , rk = 0.

• Next, from τ(m) we wish to re–create the entire collection P. To do this, it is sufficient
to take each τ and re–create all of the partitions which had the same sizes. Let σmτ
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denote the resulting collection for a fixed partition τ . Thus, P is equal to the union of
σmτ over all τ ∈ τ(m). Note that the number of elements in σmτ is given by

(
m

r1 r2 . . . rk

)
.

We also use the notation Rj =
∑j

i=1 ri, with R0 = 0. Note that Rk = m.

• For each partition σ, we write σ1, . . . , σm to denote the individual subsets of the par-
tition. Thus, for σ = ({1}{234}), we would have σ1 = {1} and σ2 = {2, 3, 4}.

• For each σj as defined above, we let

AVσj
Z =

(∑
i∈σj

Zi

)
/|σj|, and AV −l

σj
Z =

(∑
i∈σ

(l)
j

Zi

)
/|σ(l)

j |,

where σ
(l)
j denotes σj with its last l elements removed.

We are now ready to calculate E[
∑k

i=1(Z
G
i )21T=m]. By considering all possible partitions,

this is equal to the sum over all τ ∈ τ(m) of the following terms

∑

σ∈σmτ

E

[{
m∑

j=1

|σj|
(
AVσj

Z
)2
}

1AVσ1Z>...>AVσmZ

m∏

j=1

1
AVσj

Z>max{AV −1
σj

Z,...,AV
−(|σj |−1)
σj

Z}

]
.

By permuting each σ ∈ σmτ , and appealing to the exchangeability of the Zi’s, this is equal
to

E

[{
m∑

j=1

|σj |
(
AVσj

Z
)2
}{

k∏

i=1

1AVσRi−1+1
Z>...>AVσRi

Z

}

×
{

m∏

j=1

1
AVσj

Z>max{AV −1
σj

Z,...,AV
−(|σj |−1)
σj

Z}

}]

= E

[{
m∑

j=1

|σj|
(
AVσj

Z
)2
}{

k∏

i=1

1AVσRi−1+1
Z>...>AVσRi

Z

}]

×E

[{
m∏

j=1

1
AVσj

Z>max{AV −1
σj

Z,...,AV
−(|σj |−1)
σj

Z}

}]
,

by independence of each AVσj
Z and each Zi − AVσj

Z for i ∈ σj . Notice that the permuta-
tions of σ ∈ σmτ do not account for permutations across all groups with equal “size”. By
considering furthermore all permutations between groups of equal size, we further obtain

34



that the last display above is equal to

E

[{
m∑

j=1

|σj |
(
AVσj

Z
)2
}]

E

[{
k∏

i=1

1AVσRi−1+1
Z>...>AVσRi

Z

}]

×E

[{
m∏

j=1

1
AVσj

Z>max{AV −1
σj

Z,...,AV
−(|σj |−1)
σj

Z}

}]

= m E

[{
k∏

i=1

1AVσRi−1+1
Z>...>AVσRi

Z

}]
E

[{
m∏

j=1

1
AVσj

Z>max{AV −1
σj

Z,...,AV
−(|σj |−1)
σj

Z}

}]
.

Lastly, we collect terms to find that E[
∑k

i=1(Z
G
i )21T=m] is equal to m times

∑

τ∈τ(m)

E

[{
k∏

i=1

1AVσRi−1+1
Z>...>AVσRi

Z

}]
E

[{
m∏

j=1

1
AVσj

Z>max{AV −1
σj

Z,...,AV
−(|σj |−1)
σj

Z}

}]

=
∑

τ∈τ(m)

∑

σ∈σmτ

E

[
1AVσ1Z>...>AVσmZ

{
m∏

j=1

1
AVσj

Z>max{AV −1
σj

Z,...,AV
−(|σj |−1)
σj

Z}

}]

= P (T = m),

which concludes the proof.

Proof of Proposition 4.5. In light of Proposition 3.4 and the definition of Y G (along with
some simple calculations), it is sufficient to prove that

(s − r + 1)E

[
s∑

x=r

gren(Ỹ (r,s))2
x

]
=

s−r∑

i=1

1

i + 1
, (6.15)

using the notation of the Proposition 3.4. Without loss of generality we may assume that
r = 0, and for simplicity we write Ỹ for Ỹ (r,s).

Let k = s + 1, and let Z1, . . . , Zk denote k i.i.d. N(0,1) random variables, l et Z̄ denote
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their average, and let Z̃i = Zi − Z̄ (which is independent of Z̄). We then have that

E

[
k∑

x=1

gren(Z)2
x

]
= E

[
k∑

x=1

gren(Z̃ + Z̄)2
x

]

= E

[
k∑

x=1

{
gren(Z̃)x + Z̄

}2
]

= E

[
k∑

x=1

{
gren(Z̃)x

}2

+
k∑

x=1

Z̄2

]

= E

[
k∑

x=1

{
gren(Z̃)x

}2
]

+ 1

= (y + 1)E

[
y∑

x=0

{
gren(Ỹ )x

}2
]

+ 1

Therefore, by Lemma 6.3, to prove (6.15), it is sufficient to show that

E

[
k∑

x=1

gren(Z)2
x

]
= E[T ] =

k∑

i=1

1

i
,

where T denotes the number of touchpoints of the LCM with the cumulative sums of the
Z ′

is.
To do this, we use the results of Sparre Andersen (1954). He considers exchangeable

random variables X1, X2, . . . and their partial sums S0 = 0, S1, S2, . . . , Sn =
∑n

i=1 Xi, and
shows that the number Hn of values i ∈ {1, . . . , n − 1} for which Si coincides with the least
concave majorant (equivalently the greatest convex minorant) of the sequence S0, . . . , Sn has
mean given by

E[Hn] =
n∑

i=1

1

i + 1
,

as long as the random variables X1, . . . , Xn are symmetrically dependent and

P (Si/i = Sj/j) = 0, 1 ≤ i < j ≤ n.

The vector X1, . . . , Xn is symmetrically dependent if its joint cumulative distribution func-
tion P (Xi ≤ xi, i = 1, . . . , n) is a symmetric function of x1, . . . , xn. This result is Theorem 5 in
Sparre Andersen (1954). Clearly, we have that E[T −1] = E[Hk], for X1 = Z1, . . . , Xn = Zk,
which are exchangeable, and satisfy the required conditions. The result follows.

Proof of Remark 3.11. To prove this result we continue with the notation of the previous
proof. Equality of gren(Y ) with Y holds if and only if the above partition T = {0, . . . , y}.
By Theorem 5 of Sparre Andersen (1954), this occurs with probability 1/(y + 1)!.
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Proof of Remark 4.6. By Proposition 3.4 (and using the notation defined there), it is enough
to prove that

E[gren(Ỹ )2
x] ≤ 1

τ
− 1

τ 2
,

where for simplicity we write Ỹ = Ỹ (s,r). Let {W̃x}s
x=r be i.i.d. normal random variables

with mean zero and variance 1/τ, and let W = (
∑s

x=r W̃x)/τ . Then Ỹ
d
= Z̃ − Z, and also

gren(Z̃)x = gren(Z̃ −Z)x + Z. Notice also that Z̃ −Z and Z are independent. We therefore
find that

E[gren(Ỹ )2
x] + 1/τ 2 = E[gren(Z̃)2

x]

≤ E[Z̃2
x] = 1/τ,

the latter inequality following directly from Theorem 1.6.2 of Robertson et al. (1988), since

the elements of Z̃ are independent.

6.4 Estimating the mixing distribution: proofs

Proof of Theorem 5.1. Since ||q̃n−q||k ≤ ||q̃n−q||1 and H(q̃n, q) ≤
√
||q̃n − q||1, it is sufficient

to only consider convergence in the ℓ1 norm. Note that

|q̃n,x − qx| ≤ (x + 1) {|p̃n,x+1 − px+1| + |p̃n,x − px|} ,

and therefore we may further reduce the problem to showing that
∑

x≥0 x|p̃n,x−px| converges
to zero.

For p̃n = p̂n,x, we have that for any large K

∑

x≥0

x|p̂n,x − px| ≤ K sup
x<K

|p̂n,x − px| +
∑

x≥K

xpx +
∑

x≥K

xp̂n,x,

and since Ep[X] exists by assumption, it follows from the law of large numbers that for
any K,

∑

x≥K

xp̂n,x →
∑

x≥K

x px,

almost surely. The proof now proceeds as in the proof of Theorem 2.4.
For the rearrangement estimator and the MLE, we may use the same approach. The key

is to note that
∑

x≥K xp̃n,x ≤
∑

x≥K xp̂n,x, for any K and for both p̃n = p̂R
n , p̂G

n . This holds
since fx = Ix≥Kx is an increasing function and therefore (6.6) of Lemma 6.1 applies.

Proof of Theorem 5.2. Since κ < ∞ by assumption, the theorem follows directly from the
results of Sections 3 and 4, as well as Theorem 5.1.
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Probab. Statist. 39 217–240.

Ferguson, T. S. (1996). A Course in Large Sample Theory. Texts in Statistical Science
Series, Chapman & Hall, London.

Fougères, A.-L. (1997). Estimation de densités unimodales. The Canadian Journal of

Statistics 25 375–387.

38
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