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Abstract

Image analysis frequently deals with shape estimation and image reconstruction.
The objects of interest in these problems may be thought of as random sets, and one
is interested in finding a representative, or expected, set. We consider a definition of
set expectation using oriented distance functions and study the properties of the asso-
ciated empirical set. Conditions are given such that the empirical average is consistent,
and a method to calculate a confidence region for the expected set is introduced. The
proposed method is applied to both real and simulated data examples.

Keywords: Random Closed Set, Simultaneous Confidence Interval, Image Reconstruc-
tion, Shape Estimation.

1 Introduction

Image analysis frequently deals with the problem of shape estimation. Many instances of
this may be found, for example, in medical imaging, where shape analysis of brain structures
is often used to differentiate between different populations of subjects. Examples include the
study of the hippocampus for schizophrenic patients and corpus callosum for adults with
fetal alcohol exposure, as well as other neuroanatomical structures (Styner et al., 2004;
Bookstein et al., 2002b,a; Styner et al., 2003; Levitt et al., 2009).

To analyze the observed shapes, it is natural to think of them as realizations of random
sets. The problem of shape inference then translates into finding the average set and
describing its variability.

As the space of closed sets is nonlinear, there is no natural way to define the mean
of a set. Indeed, many different definitions of the expected set exist, and therefore one
must first select a definition of the mean to work with. Quoting Molchanov (2005), “the
definition of the expectation depends on what the objective is, which features of random
sets are important to average, and which are possible to neglect”. Here, we focus on the
definition of set expectation given in Jankowski and Stanberry (2010), which is based on the
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oriented distance function (ODF) 1. The definition is akin to those considered in Baddeley
and Molchanov (1998); Lewis et al. (1999), which also rely on the distance function. The
ODF definition, however, has several desirable theoretical properties and was found to
outperform other definitions in image applications; for a detailed comparison see Jankowski
and Stanberry (2010). A thorough review of other existing definitions appears in Molchanov
(2005).

In this paper, we study the empirical estimators of the expected set and expected bound-
ary using the ODF definition. We give conditions for consistency of these estimators. We
also study their variability using the concept of confidence regions.

Seri and Choirat (2004) present two methods for the calculation of the confidence region
of the Aumann expectation. To our best knowledge, this is the only other time confidence
regions were studied in the context of random sets. The methodology was developed for
convex sets, and therefore the Aumann expectation is a natural choice, as it always yields
a convex answer.

Molchanov (1998, Theorem 3.1) gives a central limit theorem for the Hausdorff distance
of sublevel sets. Baddeley and Molchanov (1998) use this result to obtain a central limit
theorem for their expectation, and this may also be done for the ODF definition. Such
central limit theorems could potentially be used to calculate confidence regions. The regions
may be found as a dilation of the empirical set estimator. However, this approach requires
the estimation of a complex functional of the derivative of the expected distance transform,
which renders the method impractical. Furthermore, a dilation approach would provide
a uniform confidence region: the distance between the boundary of the mean set and the
boundary of the confidence set would be equivalent at all points. Thus, the dilation method
would mask important information about the local variability of the estimators.

In this paper, we propose a new and simple approach to calculate confidence regions for
both the mean set and its boundary. The method works for both convex and non-convex
sets. The resulting confidence regions are conservative in that they cover the expected set
with at least 100(1− α)% probability. We show that the confidence regions satisfy certain
natural equivariance properties, which are analogous to those of confidence intervals for real–
valued parameters. Moreover, the confidence regions provide a simple visual representation
of the variability of the estimators and are able to detect local changes in variability. The
method can also be used in Bayesian inference to study the behaviour of the posterior
sample.

Our definition of the confidence region is based on the quantiles of the supremum of
a Gaussian random field. We consider several examples where this quantile is calculated
easily. When these quantiles are not available analytically, we propose a bootstrap method
to provide approximate confidence regions. The bootstrap approach also avoids making an
assumption of an underlying distribution of the observed sets, which could be quite difficult
for practitioners.

The outline of this paper is as follows. In Section 2, we review the definitions of set and
boundary expectations given in Jankowski and Stanberry (2010). Consistency is studied

1To differentiate it from others, we will refer to the Jankowski and Stanberry (2010) definition as the

ODF definition. However, the definition Baddeley and Molchanov (1998) may also be based on the ODF.
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in Section 3 and the confidence regions are described in Section 4. Section 5 gives several
examples of our approach, including a simulation study. We consider the toy image re-
construction example discussed by Baddeley and Molchanov (1998), and analyse the sand
grains data first discussed in Stoyan and Molchanov (1997). Lastly, we consider a medical
imaging example, and apply our methods to a boundary reconstruction problem in a mam-
mogram image. Proofs and technical details appear in the Appendix, which is available
online as supplementary material.

1.1 Notation and Assumptions

Throughout, we let D denote the domain on which the sets are observed. Unless otherwise
stated, we assume that D is the working domain and write, for example, A = {x : x ∈ A}
without stating that x ∈ D explicitly. We also assume that D is a subset of Rd, and denote
the Euclidean norm of x as |x|.

We write Br(x0) = {x : |x−x0| ≤ r} for the closed ball of radius r centered at x0. For a
set A, we write Ao, A,Ac and ∂A to denote its interior, closure, complement and boundary.
Unless noted otherwise, set operations are calculated relative to the domain D. That is,
Ac = Ac ∩ D, and so forth. Deterministic sets are denoted using capital letters A,B . . .,
while bold upper-case lettering, A,B, . . ., is used for random sets.

The notation C(D) is used to denote the space of continuous functions C(D) = {f :
D 7→ R, f continuous} endowed with the uniform topology. That is, fn → f in C(D) if
supx∈K |fn(x)− f(x)| → 0, for all compact subsets K ⊂ D. We write Xn ⇒ X to say that
Xn converges weakly to X. Throughout the paper, when handling weak convergence of
stochastic processes or random fields, we assume that these take values in C(D).

2 Random Closed Set and Its Expectation

Let F be the family of closed sets of Rd and let K denote the family of all compact subsets of
Rd. For a probability triple (Ω,A, P ), a random closed set (RCS) is the mapping A : Ω 7→ F
such that for every compact set K ∈ K

{ω : A(ω) ∩K 6= ∅} ∈ A.

For more background on random closed sets, we refer to Matheron (1975); Ayala et al.
(1991).

2.1 Definition of Expectation

For a nonempty set A ⊂ D, the distance function is defined as dA(x) = infy∈A |x− y| for all
x ∈ D. Given the distance function of a closed set A, the original set may be recovered via
A = {x : dA(x) = 0}. Also, the Hausdorff distance may be calculated using the distance
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function as

ρ(A,B) = max
{

sup
x∈A

d(x,B), sup
x∈B

d(x,A)
}

= sup
x∈D
|dA(x)− dB(x)|,

for any sets A,B ⊂ D. We refer to Delfour and Zolésio (2001) for more mathematical
properties of the distance function. The distance function has also been used in the context
of image thresholding, see for example Friel and Molchanov (1999); Molchanov and Terán
(2003).

The oriented distance function (ODF) of any set A ⊂ D such that ∂A 6= 0 is defined as
bA(x) = dA(x) − dAc(x) for all x ∈ D. For a closed set, the set and its boundary may now
be recovered by A = {x : bA(x) ≤ 0} and ∂A = {x : bA(x) = 0}. Note that, given only the
information at a fixed point x0, the ODF is more informative than the distance function.
Given the value of bA(x0) we know the value of dA(x0), but the converse statement is not
true.

For an RCS A with a.s. non-empty boundary we define the random function bA(x), and
denote its pointwise mean as E[bA(x)]. The mean set and mean boundary are then defined
as follows.

Definition 2.1. Suppose that A is a random closed set such that ∂A 6= ∅ almost surely
and assume that E[|bA(x0)|] < ∞ for some x0 ∈ D. Then

E[A] = {x : E[bA(x)] ≤ 0},
Γ[A] = {x : E[bA(x)] = 0}.

Furthermore, we define the expectation of the complement as E[Ac] = {x : E[bA(x)] ≥ 0}.

Remark 2.2. If A is closed and ∂A 6= ∅ then Ac is open, however, the oriented distance
function of Ac continues to be well–defined, and indeed we have that bAc(x) = − bA(x).
Thus, E[Ac] = E

[
Ac
]

= {x : E[bA(x)] ≥ 0}.

Example 1 (disc with random radius). Suppose that A = {x : |x| ≤ R} ⊂ Rd, for some
non–negative, integrable, real-valued random variable R. Then bA(x) = |x| −R and hence
E[A] = {x : |x| ≤ E[R]} and Γ[A] = {x : |x| = E[R]}. That is, the expected set is a disc
with radius E[R], with boundary equal to the expected boundary.

Example 2 (random singleton). Suppose that A = {X} for some Rd-valued random vari-
able X, then E[A] = Γ[A] = ∅.

In Example 1, Definition 2.1 yields a natural answer, while the result of Example 2
seems counterintuitive. As mentioned previously, the choice of expectation depends on the
problem at hand. The ODF definition was motivated by problems in imaging, where random
singletons are regarded as noise. Example 2 illustrates a natural de-noising property of the
expectation; see also the discussion in Jankowski and Stanberry (2010).

The function E[bA(x)] provides additional information about the mean and its boundary.
Recall that bA(x) is Lipschitz with constant one almost surely (Delfour and Zolésio, 1994).
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Therefore, E[bA] is also Lipschitz, which also implies that E[A] and Γ[A] are closed sets.
Furthermore, if the function E[bA(x)] is smooth in a neighbourhood of x0, then Γ[A] is also
smooth near x0.

Proposition 2.3. Suppose that d ≥ 2, and fix k ≥ 1, and suppose that the function E[bA(x)]
is Ck in a neighbourhood of x0, and that |∇E[bA(x0)]| 6= 0. Then, there exists a (possibly
different) neighbourhood of x0 such that Γ[A] is Ck.

We next consider the estimation of E[A] and Γ[A].

Definition 2.4. Suppose that we observe A1, . . . ,An random sets, and let

b̄n(x) = 1
n

∑n
i=1 bAi(x).

Then the empirical mean set and the empirical mean boundary are defined as

Ān = {x : b̄n(x) ≤ 0} and Γn = {x : b̄n(x) = 0}.

Similarly to the mean ODF, the function b̄n is Lipschitz, and therefore the empirical
sets Ā and Γn are both closed.

2.2 Consistency and Fluctuations of the Empirical ODF

Suppose that we have n independent and identically distributed (IID) RCSs A1, . . . ,An.
Then the following results are valid for the average ODF.

Theorem 2.5. Suppose that A1, . . . ,An are IID, and that for some x0 ∈ D, E[bA(x0)] <
∞. Then for all compact subsets K ⊂ D

lim
n

sup
x∈K
|b̄n(x)− E[bA(x)]| = 0,

almost surely.

Theorem 2.6. Suppose that A1, . . . ,An are IID, and that E[b2A(x0)] <∞ for some x0 ∈ D.
Then

Zn(x) ≡
√
n(b̄n(x)− E[bA(x)])⇒ Z(x),

where Z is a mean zero Gaussian random field with covariance

cov(Z(x),Z(y)) = E[bA(x)bA(y)]− E[bA(x)]E[bA(y)]

for x, y ∈ D.

The next result shows that Z has very smooth sample paths. Recall that a function
f : Rd 7→ R is Hölder of order α if it satisfies |f(x) − f(y)| ≤ K|x − y|α, for some positive
finite constant K and α > 0, for all x, y in the domain of f .

Proposition 2.7. For any x, y, x′, y′ ∈ D

var(Z(x)− Z(y)) ≤ |x− y|2, (2.1)

|cov(Z(y)− Z(x),Z(y′)− Z(x′))| ≤ 2|y − x||y′ − x′|. (2.2)

Moreover, the sample paths of Z are Hölder of order α, for any α < 1.
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3 Consistency

Here, we study consistency of the estimators Ān and Γn, assuming that b̄n → E[bA] almost
surely in C(D). By Theorem 2.5, these results apply to IID random closed sets. Following
Molchanov (1998), we say that An converges strongly to A, if the Hausdorff distance
ρ(An ∩ K,A ∩ K) → 0 almost surely, for any compact set K. The following theorem
follows from Molchanov (1998, Theorem 2.1) and Cuevas et al. (2006, Theorem 1).

Theorem 3.1. Suppose that

lim
n

sup
x∈D
|b̄n(x)− E[bA(x)]| = 0

almost surely, and that E[A] is well-defined. Suppose also that the expected ODF, E[bA(x)],
satisfies

{x : E[bA(x)] ≤ 0} = {x : E[bA(x)] < 0}. (3.1)

Then Ām converges strongly to E[A]. If E[bA(x)] also satisfies

{x : E[bA(x)] ≥ 0} = {x : E[bA(x)] > 0}, (3.2)

then Γn converges strongly to Γ[A].

Condition (3.1) says that the expected ODF is not allowed to have a local minimum on
Γ[A] = {x : E[bA(x)] = 0}, while (3.2) excludes mean ODFs which have a local maximum
on Γ[A] (again, this need not be unique). Alternatively, since E[bA(x)] is a continuous,
condition (3.1) says that E[A] is a topologically regular closed set, while condition (3.2)
says that E[Ac] is a topologically regular open set.

Remark 3.2. It is possible that E[bA(x)] violates the conditions (3.1) and/or (3.2) and
consistency still holds. For example, consider the RCS A = {x0} ⊂ Rd almost surely. Then
IID sampling trivially produces a consistent estimate, but E[bA(x)] fails to satisfy (3.1).

Example 3 (half plane). For D ⊂ Rd, consider the RCS A = {x ∈ D : x1 ≤ Θ}, where
Θ is a real-valued random variable with finite mean E[Θ]. Then bA(x) = x1 − Θ, and
E[bA(x)] = x1−E[Θ]. The mean ODF satisfies both conditions (3.1) and (3.2), and therefore
Ān = {x : x1 ≤ Θ̄n} and Γn = {x : x1 = Θ̄n} are consistent estimators of E[A] = {x :
x1 ≤ E[Θ]} and Γ[A] = {x : x1 = E[Θ]}. Indeed, we may easily check that ρ(E[A], Ān) =
ρ(Γ[A],Γn) = |Θ̄n − E[Θ]| which converges to zero almost surely.

The following result provides some further insight into the consistency conditions.

Proposition 3.3. Conditions (3.1) and (3.2) may be re–written in terms of mean set
properties.

(i) Condition (3.1) holds iff ∂E[Ac] = Γ[A], and iff E[A] = (E[Ac])c.

(ii) Condition (3.2) holds iff ∂E[A] = Γ[A], and iff E[Ac] = (E[A])c.
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Example 4 (set and its boundary). Suppose that A ⊂ R is either [0, 1] or {0, 1} with equal
probability. Then E[A] = Γ[A] = [0, 1], while E[Ac] = R. On the other hand, if [0, 1] is
seen with probability p, then if p < 0.5, we have that E[A] = Γ[A] = {0, 1}; If p > 0.5,
then E[A] = [0, 1] and Γ[A] = {0, 1}. The case p = 0.5 provides a setting where neither
(3.1) nor (3.2) are satisfied.

We observe n independent sets A1,A2, . . . ,An, where each Ai is either [0, 1] or {0, 1}
with equal probability. Let p̂n denote the proportion of the random sets equal to [0, 1].
Then

b̄n(x) = p̂nb[0,1](x) + (1− p̂n)b{0,1}(x),

and it follows that whenever p̂n < 0.5, Ān = Γn = {0, 1}, and for p̂n > 0.5, Ān = [0, 1]
while Γn = {0, 1}. Clearly, convergence to the expected set or the expected boundary can
never be achieved.

Example 5 (missing centre). Suppose that A is either a disc or an annulus in R2; that is,

A =
{
{x : |x| ≤ 1} with probability p,
{x : 0.5 ≤ |x| ≤ 1} otherwise.

Then the expected set E[A] is an annulus for p < 1/3, and a disc for p ≥ 1/3. For p 6= 1/3,
the expected ODF satisfies both (3.1) and (3.2). For p = 1/3, we have

E[bA(x)] =
{
|x| − 1 for |x| ≥ 0.75,
−|x|/3 otherwise,

and hence E[A] = {x : |x| ≤ 1} while Γ[A] = {x : |x| = 0, 1} 6= ∂E[A]. Since E[bA(x)] has
a local maximum at x = 0, it fails to satisfy (3.2), and therefore this point may be omitted
by the estimators Γn.

Figure 1: The expected boundary (white) for Example 6 is superimposed on a grey scale
image of the expected ODF.

Example 6 (blinking square). Suppose that the RCS A is either a rectangle or a union of
two squares with equal probability. Specifically, define

A1 = {x : 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 1},
A2 = {x : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} ∪ {x : 2 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 1}.
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Then A = A1 with probability 0.5, and otherwise A = A2. Thus, half of the time the
A has its “middle” removed. The resulting mean set and mean boundary are shown in
Figure 1. Here, the expected ODF has no local maxima, or minima, along the boundary,
and therefore both (3.1) and (3.2) are satisfied.

4 Confidence Regions

We now construct confidence regions, or confidence supersets, for both E[A] and Γ[A]. To
do this, we assume that the sets are observed on a compact windowW ⊆ D. We also assume
that Zn ⇒ Z in C(W), which holds, for example, under IID sampling by Theorem 2.6.

Definition 4.1. Let q1 and q2 be numbers such that
pr(supx∈W Z(x) ≤ q1) = 1− α, and pr(supx∈W |Z(x)| ≤ q2) = 1− α. Then, a 100(1− α)%
confidence region for E[A] ∩W is{

x ∈ W : b̄n(x) ≤ q1/
√
n
}

(4.1)

and a 100(1− α)% confidence region for Γ[A] ∩W is{
x ∈ W : |b̄n(x)| ≤ q2/

√
n
}
. (4.2)

By Proposition 2.7, the limiting field Z is continuous, and therefore both supx∈W Z(x)
and supx∈W |Z(x)| are well-defined. Further, Proposition 2.7 gives a uniform upper bound
on the variability of the increments of the random field. Understanding the path properties
of the process Z, such as smoothness, provides information about the variability of the
quantiles q1 and q2 and therefore also on the tightness of the confidence sets. We also make
the following comments about the new definition.

1. The confidence region is conservative, in that it covers the set E[A] ∩W or Γ[A] ∩W
with a probability of at least 100(1−α)%. One reason why the method is conservative
is our use of the supremum of the fluctuation field to find the cut–off quantile values.
However, the field Z is very smooth and highly correlated by Proposition 2.7. Therefore,
we expect that the proposed method, although conservative, yields reasonable answers,
especially for sets that have been co–registered apriori. We explore the question of
over–coverage via simulations in Section 5.2.

2. The confidence region is “immune” to the consistency conditions (3.1) and (3.2); see
Example 8.

3. If the exact distribution of Z is unknown (as is often the case in practice), the quantiles
may be approximated using a bootstrap approach. For computational reasons, it is
often easier to calculate asymmetric quantiles in (4.2).

4. The confidence region gives no information as to the geometry of the random sets. That
is, the shape of the confidence region may be similar for observed random sets which
are stars, as well as for those which are squares.
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Figure 2: Confidence regions for Example 7: (left) the mean boundary Γ[A] in black and the
empirical boundary Γn in grey; (centre) a 95% bootstrap confidence set for E[A]; (right) a
95% bootstrap confidence set for Γ[A]. The expected boundary Γ[A] is shown in black for
comparison.

Example 7 (disc in R2 with random centre). The random set is a disc with radius one
centred at (Θ, 0) where Θ is Uniform[0, 2], and suppose that we observe 100 IID random sets
from this model. The expected set E[A] is shown in Figure 2. Moreover, since E[bA(x)] ≥
|x− x0| − 1 where x0 = (E[Θ], 0), it follows that E[A] is contained inside the disc of radius
one centered at (1, 0). Confidence regions were formed for both Γ[A] and E[A] using re-
sampling techniques to estimate the quantiles of supx∈W Z(x) and supx∈W |Z(x)| where the
window W = [−2, 2]× [−1, 3]. These are illustrated in Figure 2.

Example 8 (confidence regions for the set and its boundary). Let [0, 1] ⊂ R and suppose
that A is either {0, 1} or [0, 1] with equal probability. Suppose also that we observe a simple
random sample of size n from this model. Recall that E[A] = Γ[A] = [0, 1], and E[bA(x)]
satisfies neither (3.1) nor (3.2). As before, let p̂n denote the proportion of times that the set
[0, 1] is observed. If p̂n > 0.5, then Ān = Γn = {0, 1} 6= [0, 1]. If p̂n < 0.5, then Ān = [0, 1]
with Γn = {0, 1} 6= Γ[A].

The fluctuation field is given by

Zn(x) =
√
n(p̂n − 0.5)

(
b[0,1](x)− b{0,1}(x)

)
⇒ Z

(
b[0,1](x)− b{0,1}(x)

)
,

where Z is a univariate normal random variable with mean zero and variance 0.25. The
largest difference for b[0,1](x)− b{0,1}(x) occurs at x = 0.5, and hence, for any window such
that [0, 1] ⊂ W, we have

sup
x∈W

Z(x) = max{−Z, 0}, and sup
x∈W
|Z(x)| = |Z|.

Therefore, the exact quantiles are q1 = 1.645/2 and q2 = 1.96/2, and the confidence re-
gion for Γ[A] is given by {x : |b̄n(x)| ≤ 1.96/2

√
n}. Now, for any n, maxx∈[0,1] |b̄n(x)| =

|b̄n(0.5)| = |0.5 − p̂n|. Therefore the confidence region misses a part of Γ[A] if and only if
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|0.5 − p̂n| > 1.96/2
√
n. For large n, this happens with a probability of roughly 0.95. On

the other hand, the Hausdorff distance ρ(Γ[A],Γn) = 0.5 whenever p̂n 6= 0.5. This example
illustrates that the confidence regions are not affected by the violation of the consistency
conditions.

Example 9 (confidence set for disc with random radius). Suppose that A is a disc with
random radius R with µ = E[R] and σ2 = var(R). Then the expected set is a circle with
radius µ. Also, the 95% confidence interval for E[A] is a circle with radius µ+ 1.645σ/

√
n,

while the 95% confidence set for Γ[A] is the band {x : µ−1.96σ/
√
n ≤ |x| ≤ µ+1.96σ/

√
n}.
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0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5
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Figure 3: Left: the expected boundary Γ[A] (black), its estimate based on 25 samples
(grey) and the boundary of a pacman with radius 0.5 (dashed); centre and right: 95%
bootstrapped confidence regions for E[A] and Γ[A], respectively. The confidence sets are
denoted by the shaded area, while the black line shows Γ[A].

Example 10 (pacman in R2). Define the pacman with radius r, A(r), to be a disc with
radius r centred at the origin with its upper left quadrant removed. That is,

A(r) = {x : |x| ≤ r} ∩ {{x : x1 ≤ 0} ∪ {x : x2 ≤ 0}} .

Figure 3 (right, dashed) shows the contour of A(r) for r = 0.5. Suppose that A = A(R),
where R is a uniform random variable on [0, 1].

The expected set E[A] is a smoothed version of A(0.5), as seen in Figure 3 (left). Recall
that the smoothness of the boundary depends on the smoothness of E[bA(x)]. As the latter
is an integral, which tends to have more smoothness than the original function, we expect
that in general the expectation is as or more smooth than the original realizations of the
boundary. This is exactly what one sees in Figure 3: the mean boundary is smoothed out
in the regions where there is movement; however, since the origin is a fixed point of the
random boundary, no additional smoothness is introduced here by the average.

Figure 3 also shows bootstrapped 95% confidence sets for both E[A] and Γ[A]. The
accuracy of the estimate and the apparent centering of the confidence intervals around the
mean set may be explained upon closer inspection of the sample. The ODF of the pac-
man is similar to that of the circle; indeed, they are identical in the lower left quadrant.
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Therefore, the behaviour of the estimators and of the confidence regions is not unlike that
of estimators and confidence intervals for the real-valued E[R] = 0.5. For our sample of
n = 25, we observed R̄n = 0.496, which explains the accuracy of the estimator Γn. On the
other hand, the confidence region still shows the large variability of Γn.

RCS with simplified ODF structure.

Consider an RCS A and suppose that there exist functions hj j = 1, . . . , k and random
variables ηj j = 1, . . . , k such that

bA(x) =
∑k

j=1 hj(x) ηj

for all x ∈ D (see also Section 3 in Jankowski and Stanberry (2010)). For example, the
ball centered at x0 with random radius R takes this form. Here, bA(x) = |x− x0| −R, and
hence h1(x) = |x− x0|, h2(x) = −1 and η1 = 1, η2 = R.

For such sets, both the empirical and ODF average have a similar simplified form. That
is, b̄n =

∑k
j=1 hj(x) η̄n,j and E[bA(x)] =

∑k
j=1 hj(x)E[ηj ]. Furthermore, the fluctuation

field for these sets is particularly straightforward. Suppose that we observe IID samples of
the random vector (η1, . . . , ηk), and assume that E[η2

j ] <∞ for all j = 1, . . . , k. Then

Zn(x)⇒
∑k

j=1 Zjhj(x),

where Z = {Z1, . . . , Zk} is a multivariate normal random variable with mean zero and
variance matrix given by cov(Zj , Zm) = cov(ηj , ηm).

Example 11 (Random half-plane). Suppose that Θ ∼Uniform[a, b] and let A = {x : x2 ≥
x1 tan Θ}. That is, A is the plane above the line which goes through the origin and has angle
Θ with the x1-axis. Here, bA(x) = x1 sin Θ − x2 cos Θ, and hence h1(x) = x1, h2(x) = x2

and η1 = sin Θ, η2 = cos Θ. Some calculations also reveal that E[A] = {x : x2 ≥ x1 tan((a+
b)/2)} and Γ[A] = {x : x2 = x1 tan((a+ b)/2)}.

The confidence region for Γ[A] is a strip centred on the line x2 = x1η̄1/η̄2 of width
q2/
√
n η̄2, where q2 is the 1− α quantile of supx∈D |Z1x1 + Z2x2|.

4.1 Equivariance Properties

The following proposition gives equivariance properties of the confidence regions under
dilation and rigid motion. The result corresponds to the classical scaling results for the
mean and standard deviation of univariate data.

Proposition 4.2. Consider a random closed set A ⊂ D. Let C and CΓ denote the confi-
dence regions for E[A] ∩W and Γ[A] ∩W, respectively.

(i) Fix α > 0, and let A1 = αA with W1 = αW. Then the confidence regions for
E[A1] ∩W1 and Γ[A1] ∩W1 are αC and αCΓ, respectively.

(ii) Fix a rigid motion g ∈ E(d), and let A2 = g(A) withW2 = g(W). Then the confidence
regions for E[A2] ∩W2 and Γ[A2] ∩W2 are g(C) and g(CΓ), respectively.
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4.2 A Modified Approach

It is not hard to see that the variability of Ān and Γn depends on the local fluctuations
of the field Z around Γ[A] (see also Molchanov (1998, Theorem 3.1)). One natural way to
incorporate this idea into calculation of the confidence region is described below.

(i) Calculate the 100(1 − α)% confidence regions for Γ[A] as described in the previous
section. Let C denote this region.

(ii) Find the 100(1− α/2)% upper quantile of supx∈C |Z(x)|, and call this q̃2.

(iii) The 100(1−α)% confidence region for Γ[A] is then calculated as
{
x : |b̄n(x)| ≤ q̃2/

√
n
}
.

The modification is designed to decrease the size of the quantile q1 in (4.1). In the first
step we reduce the size of the domain of the supremum to a set which is likely to contain
the boundary. Note also that the set C, and therefore also q̃2, depend on the sample
size n. Thus, the larger the sample size, the more effective the modification. A similar
approach yields a modified confidence region for E[A]. We find that this modification yields
a slight improvement in the coverage probabilities for some settings, although visually the
confidence regions remain quite similar. Notably, iterating (i)–(iii) does not improve the
size of the region or the coverage probabilities.

5 Examples

5.1 Implementation

There exist several efficient algorithms to calculate the distance function of any set, which
allows for easy implementation of our methods (Breu et al., 1995; Freidman et al., 1977;
Rosenfeld and Pfaltz, 1966). For many of the examples presented here, the oriented distance
function may be calculated exactly. When this was not possible, our calculations were
implemented in MATLAB (MathWorks), where the bwdist command was used to compute
the oriented distance function of a set. Here, the examples need to be discretized to pixels
(in R2) or voxels (in R3). This discretization introduces an additional source of error; see
Serra (1984) for a thorough treatment of the induced difficulties.

To minimize the effect of discretization, in the simulations described below, we se-
lected a fine gird, which was calibrated to give accurate results. Suppose that D ⊂ R2,
and that we observe n discs centered at the origin with random radius U ∼Uniform[0,1].
Here, the confidence regions for the mean boundary are exact (modulo the sample size
approximations). Setting n = 1000, we obtained empirical coverage probabilities of 95.10,
95.02, 95.30, 95.30, and 94.96 for the 95% confidence regions, for grids with side length
m = 200, 400, 600, 800, 1000, respectively (the standard error due to bootstrap sampling
was 0.0031). Finally, we selected m = 400 for our simulations.
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Table 1: Empirical coverage probabilities for the expected set / expected boundary.

n = 25 n = 100

100(1− α)% 90% 95% 90% 95%

(A) 88.40/89.65 94.76/95.60 90.40/91.23 95.68/94.12
(B) 90.24/89.85 94.63/95.05 90.16/90.35 95.14/95.04
(C1) 90.07/91.15 94.36/95.10 91.64/91.05 95.28/95.29
(C2) 91.39/93.49 96.45/97.37 92.14/93.31 96.85/97.13
(D1) 91.99/90.98 96.32/95.73 91.81/91.70 96.20/95.74
(D2) 90.67/88.56 94.48/94.66 90.95/88.89 94.86/94.97

5.2 Simulation Study

We next simulate coverage probabilities for several examples of random closed set models.
The particular examples we consider are given below.

(A) The set and its boundary when p = 0.5, considered in Example 4. Recall that in
this example netiher the set estimator nor the boundary estimator is consistent. Here
W = [−1, 2].

(B) The pacman with random radius R ∼Uniform[0,2] (see Example 10). Here W =
[−2, 2]2. Although the pacman RCS is not decomposable, it still exhibits similar be-
haviour.

(C) The random set A = A1 ∪A2, where A1 and A2 are both random discs. The two
cases we consider are as follows.

(1) A1 is centered at the origin and has radius R1 ∼Uniform[0,2]. A2 is centered at
the point (3, 0) and has radius R2 ∼Uniform[0,1]. Here W = [−2, 4]× [−2, 2].

(2) A1 is centered at the origin and has radius R1 ∼Uniform[0,1]. A2 is centered at
the point (1, 0) and has radius R2 ∼Uniform[0,1]. Here W = [−1, 2] × [−1, 1].
The mean set and some sample sets are shown in Figure 4.

(D) A random ellipse with boundary parameterized as (x1/R1)2+(x2/R2)2 = 1. Let U1, U2

be two independent random variables with distribution Uniform[0, 1]. The two cases
we consider are as follows. Throughout, we assume that W = [−1.5, 1.5]× [−1, 1].

(1) R1 = 1, R2 = 0.5 + U2/2.

(2) R1 = 1 + U1/5, R2 = 0.5 + U2/2.

In the above examples, the image was discretized and the quantiles were estimated using
Monte Carlo methods (with B = 2000 repetitions and n = 100), except for example (A),
where the quantile is known exactly. The empirical coverage was estimated using 10, 000
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Monte Carlo simulations in each case. It is important to note that there are four sources
of error: sample size, discretization, the bootstrap estimation of the quantile, and the
Monte Carlo simulations themselves. The maximal standard error due to Monte Carlo of
the empirical coverage probabilities is 0.30%, but it is not easy to quantify the standard error
due to the other three sources. In particular, we note that the quantile was estimated once
per example, and the same quantile was used in each Monte Carlo simulation (otherwise,
the simulations would have been prohibitive), which increases the bias of our results.

Figure 4: The mean set in Example (C2) in white on a gray background. The boundaries
of several sample sets are also shown.

The results of the simulation study show that our methods, though conservative, achieve
good coverage probabilities. The greatest over-coverage is seen in Example (C2), which is
the most difficult of the examples because the observed sets have not been co-registered; see
Figure 4 for some sample sets. In this example, it is possible that a slight improvement of
the coverage probability could be seen by a modification to the confidence region discussed
in Section 4.2. In general, to minimise over-coverage, we recommend choosing W as small
as possible in practice.

5.3 A Toy Image Reconstruction Example

Image averaging arises in various situations, for example, when multiple images of the same
scene are observed or when the acquired images represent objects of the same class and the
goal is to determine the average object (shape) that can be described as typical. Here we
consider an example of image averaging studied in Baddeley and Molchanov (1998). The
data set consists of 15 independent samples of a reconstructed newspaper image (Figure
5, left), and is available from http://school.maths.uwa.edu.au/homepages/adrian. For
details on how the data was generated we refer to Baddeley and Molchanov (1998).

The empirical average of the 15 observed images, Ān is shown in Figure 5 (right). The
average Ān describes the “typical” image reconstruction, and as such, may be thought of
as an estimator of the true text image. Next, we compute 95% confidence regions for the
ODF-average reconstruction based on 5K bootstrap samples. We may think of these regions
as a measure of the variability of Ān, and Γn. Figure 6 (top) shows the confidence region for
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Figure 5: A sample reconstructed image (left) and ODF average based on 15 IID samples
from the posterior (right).

E[A] with the boundary of the true image overlayed in black. The confidence set contains
all of the true text image and appears tight, although there are a number of spurious
bounds induced by noise. The confidence set for Γ[A] is also shown in Figure 6 (right).
The boundary of the lower confidence set consists of only a few closed contours scattered
throughout the text. The lack of tightness in the confidence set is explained by the small
sample size and a relatively thin font width. Hypothetically increasing the sample size would
produce tighter confidence sets for both the expected set and its boundary. For example,
the bootstrap confidence set for the boundary based on 50 and 100 samples is tighter as
compared to the one based on 15 samples (see Figure 7). We expect that actual confidence
regions for n = 50 and n = 100 would exhibit even less noise than the hypothetical regions
shown in Figure 7. It should be noted that the confidence regions in Figure 7 were created
using the original window D, and the picture is a close-up of the result.

Figure 6: 95% confidence regions for E[A] (left) and Γ[A] (right). The boundary of the
original newspaper image is shown in black.
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Figure 7: Confidence regions for the expected boundary with the boundary of the true
image (black) using the true sample size (left) and hypothetical sample sizes of n = 50, 100
(middle and right, respectively). The pictures shown are insets of the full image.

Note that these images were generated under a Bayesian framework, where the goal is
to reconstruct the original image by selecting an appropriate parameter from the posterior
distribution. Here, this parameter is not computable directly, and is instead estimated by
Ān and Γn. Although a frequentist concept, the confidence regions allow us to determine
the variability of these estimators. As Figure 7 shows, this variability depends on the sample
size.

5.4 Analysis of Sand Grains

Next, we apply the proposed methods to the sand grains data previously described in
Stoyan and Molchanov (1997) and Kent et al. (2000). The sand particles were collected
from the shores of the Baltic Sea and banks of the Zelenchuk River in Ossetia. The grains
were photographed on the same scale and the data resembles two dimensional projections
represented by binary images. Both images may be found online at www.math.yorku.ca
/∼hkj/Research/SandGrains (please note that the online images are not to scale). The
observed sand grains generally have a smooth rounded shape, but are not necessarily covex.

Figure 8: Confidence regions (grey) for the average grain (top row) and the average bound-
ary (bottom row) from the Zelenchuk river (left column) and the Baltic Sea (right column),
based on realignment with scaling.
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The grains from the two regions appear to differ both in shape and size with sea grains
being more spherical and larger as compared to river grains that are more oblong and
smaller in diameter. To summarize the data, we find the average grains and their average
boundaries for each group. We also construct confidence regions to describe the variability
of the grain shapes.

To begin with, the particles were realigned using the generalised Procrustes analysis as
implemented in the shapes package in R (R Development Core Team, 2009). To apply the
Procrustes analysis, we use the digitized data as described by Kent et al. (2000). The data
was digitized so that each sand grain was represented by 50 vertices approximately equally
spaced on the boundary. After digitization, the arc-length between the vertices is around
10-20 pixels with grain particles represented by high-resolution images of size 500 × 350.
The realignment was done with and without scaling. Using the scaling, we essentially
remove the size effect and can examine differences in average shapes. Alternatively, average
particles based on Procrustes analysis without scaling reflect differences both in size and
shapes of the particles. The median (IQR) centroid sizes are 1481 (1396, 1665) and 2076
(1867, 2376) for the river and sea grains, respectively, indicating the sea particles to be
bigger as compared to the river ones.

Figure 8 shows the confidence regions for the average particle (top row) and the expected
boundary (bottom row) for the river (left column) and the sea (right column) sands using
scaled realignment. White contours show the empirical mean boundary. The confidence
regions are based on 5K bootstrap samples. The average river grain is more oblong as
compared to the sea grain. The variability within the two groups appears to be rather

Figure 9: Confidence regions (grey) for the average grain (top row) and the average bound-
ary (bottom row) from the Zelenchuk river (left column) and the Baltic Sea (right column),
based on realignment without scaling.
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similar. Figure 9 shows the confidence regions for the average particle (top row) and the
expected boundary (bottom row) for the river (left column) and the sea (right column)
sands, based on realignment without scaling. White contours show the empirical mean
boundary. The confidence regions are based on 5K bootstrap samples. The average sea
grain is more spherical in shape as compared to the river average. It is also considerably
larger in size. The variability within the two groups again appears to be rather similar,
however, the unscaled images appear more variable than the scaled ones. Overall, the
discrepancies in shape and size between the two averages reflect the differences between
the raw data sets. Note that the boundaries of the average sets in both figures are rather
smooth.

There is also a marked difference between the scaled and unscaled river sand grain
averages. Image results from the Procrustes analysis re–alignment with and without re–
scaling are quite different. This is to be expected, as the scaling, location, and centering
re–alignments in Procrustes analysis are highly interdependent. It would be of interest to
compare other re–alignment methods, such as those proposed by Stoyan and Molchanov
(1997), but this is beyond the scope of this work.

Whether or not scaled Procrustes realignment is applied, the averages of the particles
show a clear difference between the two groups. However, this difference is at this time
only visual. An interesting and important problem is to develop quantifiable methodology
to test for presence and locations of differences between the mean shapes.

5.5 Application to Medical Imaging

We next consider an example of boundary reconstruction in mammography, where the skin-
air contour is used to determine the radiographic density of the tissue and to estimate breast
asymmetry. Both measures are known to be associated with the risk of developing breast
cancer (Scutt et al., 1997; Ding et al., 2008). In Stanberry and Besag (2009), B-spline curves
were used to reconstruct a smooth connected boundary of an object in a noisy image, and
a Bayesian approach was applied to estimate the tissue boundary in mammograms.

The boundary reconstruction was performed on a binary image which was obtained after
filtering and thresholding the original greyscale mammogram. Let D be the compact domain
of the mammogram image, and let T denote the random set describing the breast tissue, or
foreground, of the image under the prior belief distribution. Next, let M denote the noisy
binary mammogram image observed. The skin-air boundary estimate is reconstructed as
Γ[T |M ], the expected boundary of T from the posterior distribution given the observed
data M . The posterior distribution of the random set T |M is too difficult to compute, and
was approximated via Markov chain Monte Carlo. Hence, the skin-air boundary estimate
Γ[T |M ] was also approximated as Γn from a sub-sample of observed random sets Ti, Ti+1, . . .

generated from the MCMC simulation. Further details can be found in Stanberry and
Besag (2009). Here, we apply the proposed method to construct a confidence region for the
posterior mean boundary. We emphasize that the confidence region is not a credible set,
but rather it describes the variability of Γn as an estimator of Γ[T |M ].

Figure 10 (left) shows a typical digitized mammogram image, characterised by a low
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Figure 10: Confidence sets for the reconstructed skin-air boundary in a mammogram: the
original image (left), and the digitally enhanced image (centre) with the reconstructed
boundary (solid line) and confidence region (dashed line). Three insets are also shown
(right).

contrast-to-noise ratio. A probability integral transform improves the contrast by increasing
the dynamic range of image intensities (Figure 10, centre). The solid white line in Figure 10
(centre and insets on right) shows the reconstructed boundary Γn. Note that what appears
to be a nipple is, in fact, a duct system leading to the nipple, so that the estimators correctly
follow the skin line.

The 95% confidence set (dashed) for the true boundary in Figure 10 is obtained using
a bootstrap resampling of size 1000. The confidence set is tight and fits the image well.
It also shows that the reconstructed boundary is more variable toward the inside of the
breast tissue. The background of the black and white mammogram image has considerably
more noise than the foreground. Consequently, the posterior boundary samples show more
variability toward the inside of the tissue. More details can be seen in insets in Figure 10
(right).

Note also that to apply our methods, we have assumed that the observed ODFs bTi(x)
are independent and identically distributed, whilst the boundary reconstruction is based on
Markov chain Monte Carlo sampling from the posterior. To ensure the independence of the
curve samples, we construct the confidence set for the boundary using 100 samples from the
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posterior, which were acquired every 250th sweep after a burn-in period of 1000 sweeps.

6 Discussion

In this paper, we studied consistency of set and boundary averages under random sampling.
We also presented a method for the construction of confidence regions for the mean set and
mean boundary. The confidence regions, though conservative, have appealing equivariance
properties and are straightforward to implement. Simulations indicate that they achieve
good coverage probabilities. Unlike previous developments, our methods are applicable to
both convex and non-convex sets and allow for differences in local variability.

As there exists no notion of the standard deviation of a random set, one can also
use the confidence regions as an informal assessment of the variability of the mean set
estimator. This relationship is strengthened by the aforementioned equivariance properties,
which mimic the scaling properties of the standard deviation and confidence region in the
univariate setting.

In Section 5 we considered several empirical examples. The observed sets in these
cases are non-convex, and therefore methods based on the Aumann expectation would not
work well, although they may yield reasonable approximations for the sand grains example.
In Section 5.5 we applied the proposed methods to a boundary reconstruction problem
in a mammogram image. There, the confidence region technique was used to assess the
variability of the MCMC estimation of the posterior mean. The proposed method was able
to detect an increase in the variability of the sampling toward the inside of the breast tissue.
A dilation method, such as one based on the results of Molchanov (1998), would not be
able to detect this difference.
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Appendix

Recall that the boundary of a set A ⊂ Rd is Ck in a neighbourhood N(x0) if there exists a
bijective map m : N(x0) 7→ B1(0), which is Ck and whose inverse is also Ck, which maps
the boundary into the set {x ∈ B1(0) : xd = 0}. That is, the boundary is Ck at x0 if locally
it is a Ck manifold.

Proof of Proposition 2.3. We first note that the condition |∇E[bA(x0)]| 6= 0 is necessary.
For example, if E[bA(x)] has a local minimum at x0 then the boundary of E[A] contains
the isolated point {x0}, and no smoothness properties may be carried from the expected
oriented distance function to the expected boundary.

Write x = (x1, . . . , xd) ∈ Rd with x0 = (x0,1, . . . , x0,d). Since |∇E[bA(x0)]| 6= 0, there
exists a j such that ∂jE[bA(x0)] 6= 0. Let x(j) = (x1, . . . , xj−1, xj+1, . . . , xd) ∈ Rd−1, and
define H : Rd−1 × R 7→ R by H(x(j), xj) = E[bA(x)]. The boundary is now described via
the set H(x(j), xj) = 0 and we may apply the implicit function theorem (Theorem 1-12,
page 41 of Spivak (1965) and Theorem 31 p. 299 of Schwartz (1981)). The differentiability
condition on the Jacobian in the implicit function theorem holds since

∂xjH(x(j), xj) = ∂jE[bA(x0)] 6= 0.

It follows that there exists a function g(x(j)), a neighbourhood of
(x1,0, . . . , xj−1,0, xj+1,0, . . . , xd), N1 ⊂ Rd−1, and a neighbourhood of xj,0, N2 ⊂ R such
that g : N1 7→ N2 is Ck and describes the boundary, Γ[A], near x0.

Proof of Theorem 2.5. Pointwise convergence follows immediately by the law of large num-
bers. Since both b̄n(x) and E[bA(x)] are Lipschitz functions (Jankowski and Stanberry,
2010), we also obtain uniform convergence over compact sets.

The next result may be found, for example, in Kunita (1990, Theorem 1.4.7). We repeat
it here for convenience.

Theorem 6.1 (Kolmogorov’s tightness criterion.). For a compact set D ⊂ Rd, let {Yn(x) :
x ∈ D} be a sequence of continuous random fields with values in R. Assume that there exist
positive constants γ,C and α1, . . . , αd with

∑d
i=1 α

−1
i < 1 such that

E[|Yn(x)− Yn(y)|γ ] ≤ C

(
d∑
i=1

|xi − yi|αi

)
for all x, y ∈ D,

E[|Yn(x)|γ ] ≤ C, for all x ∈ D,

holds for any n. Then {Yn} is tight in C(D).

Lemma 6.2. There exists a constant C(d), depending only on d, such that

E
[
|Zn(x)− Zn(y)|2d

]
≤ C(d)|x− y|2d,

for any n and x, y ∈ D.
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Proof. The case d = 1 is immediate. Next, consider d = 2,

E
[
|Zn(x)− Zn(y)|4

]
= n−2

n∑
i,j,k,l=1

E
[
b∗i b
∗
jb
∗
kb
∗
l

]
,

where b∗i = bi(x)− bi(y)−E[bA(x)] +E[bA(y)], and |b∗i | ≤ 2|x− y| almost surely, since both
bi and E[bA] are Lipschitz (cf. Jankowski and Stanberry (2010)). Since the sampling is IID,
and the b∗i are centred, it follows that the right-hand side of the above display is equal to

n−2
{
nE[(b∗1)4] + 3n(n− 1)E[(b∗1)2]2

}
≤ 64|x− y|4.

Similarly, for d = 3,

E
[
|Zn(x)− Zn(y)|6

]
= n−3

n∑
i,j,k,l,p,t=1

E
[
b∗i b
∗
jb
∗
kb
∗
l b
∗
pb
∗
t

]
= n−3

{
nE[(b∗1)6]

+3n(n− 1)
(
E[(b∗1)3]2 + E[(b∗1)2]E[(b∗1)4]

)
+ 90n(n− 1)(n− 2)E[(b∗1)2]3

}
≤ 97 · 26 · |x− y|6.

In general, the expansion becomes

n−d
{
nE[(b∗1)2d] + . . .

+
(

2d
2 2 . . . 2

)
n(n− 1) . . . (n− d+ 1)E[(b∗1)2]d

}
,

which is bounded above by C(d)|x− y|2d, for some constant C(d).

Proof of Theorem 2.6. Recall that bA(x) is almost surely Lipschitz. Then E[bA(x0)2] <∞
for some x0 ∈ D, implies that E[bA(x)2] <∞ for all x ∈ D. Therefore, convergence in finite
dimensional distributions is immediate by the multidimensional central limit theorem, and
it remains to prove that the process Zn is tight in the space of continuous functions on D.
However, this is straightforward if we use Theorem 6.1.

The first condition with γ = 2d and αi = 2d for all i, follows immediately from Lemma
6.2 by Jensen’s inequality. For the second condition we need to bound E[Zn(x)2d] uniformly.
This follows easily since, for some fixed x0 ∈ D,

E
[
Zn(x)2d

]
≤ C ′

(
E
[
Zn(x0)2d

]
+ E

[
|Zn(x)− Zn(y)|2d

])
for come constant C ′ (depending on d), again applying Jensen’s inequality. We have already
placed a bound on the second term of the right-hand side of the above equation, and a bound
on the first term follows from the central limit theorem.
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Let D be a compact subset of Rd. We recall a theorem of Winkler (1964). Proposition
2.7 follows immediately.

Theorem 6.3 (SATZ 6 on page 837 of Winkler (1964)). Let {Y (x), x ∈ D ⊂ Rd} be a
Gaussian random field such that for τ → 0 the inequality

E
[
|Y (x+ τ)− Y (x)|2

]
≤ C|τ |ε

holds for some ε > 0 and 0 < C <∞. Then for almost all realizations there exists a random
number δ(ω) so that for any x1, x2 ∈ D with |x1−x2| < δ(ω) and 0 < η < ε/2 the inequality

|Y (x1)− Y (x2)| ≤ C0|x1 − x2|η

holds. In particular, it follows that {Y (x), x ∈ D} is continuous with probability one.

Proof of Proposition 2.7. To prove this result we again recall that both |bA(x) − bA(y)| ≤
|x− y| almost surely. Therefore,

var(Z(x)− Z(y)) = var(bA(x)− bA(y))

≤ E[(bA(x)− bA(y))2] ≤ |x− y|2.

A similar approach shows the bound for the covariance. We may now use this result, along
with Theorem 6.3 to prove that the sample paths of Z are continuous almost surely.

Proof of Theorem 3.1. The first part of the theorem follows directly from Molchanov (1998,
Theorem 2.1). The second part follows from Cuevas et al. (2006, Theorem 1), but some
further explanations are necessary. Without loss of generality, we may assume that D is
compact. Therefore, note that (M1) and (f2) of Cuevas et al. (2006, Theorem 1, page 9)
are satisfied, and that the remaining condition (f1) holds under (3.1) and (3.2). Fix ε > 0.
To prove their result, they show that there exists an n0 such that for all n ≥ n0

∂{x : E[bA(x)] ≥ 0} = {x : E[bA(x)] = 0}
⊂

(
∂{x : b̄n ≥ 0}

)ε
⊂ {x : b̄n = 0}ε,

since b̄n is continuous. We use the notation Aε = ∪x∈ABε(x) here. Thus it remains to prove
that for sufficiently large n,

{x : b̄n = 0} ⊂ {x : E[bA(x)] = 0}ε.

This follows almost exactly as in Cuevas et al. (2006, Theorem 1).
By contradiction, suppose that there exists a sequence xn ∈ {x : b̄n = 0} such that

d({xn}, {x : E[bA(x)] = 0}) > ε for all n. By compactness, there exists an x0 such
that xn → x0, and by continuity, we have that E[bA(x0)] = 0, almost surely. Therefore,
d({xn}, {x : E[bA(x)] = 0}) ≤ |xn − x0| → 0, which is a contradiction.
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Proof of Proposition 3.3. The statements are immediate from definitions and continuity of
E[bA(x)].

Proof of Proposition 4.2. Let b̄n denote the average ODF for the observed sets Ai, and b̄1n
denote the average ODF for the observed sets αAi. For any α > 0, we have bαA(x) =
αbA(x/α). It follows that b̄1n(x) = αb̄n(x/α) and E[bA1(x)] = αE[bA(x/α)]. Next,

Z1
n(x) =

√
n(b̄1n(x)− E[bA1(x)])

= α
√
n(b̄n − E[bA])(x/α).

Therefore, Z1
n(x)⇒ Z1(x) d= αZ(x/α). Lastly, note that

sup
x∈W1

Z1(x) d= sup
x∈αW

αZ(x/α) = α sup
x∈W

Z(x).

Therefore, a confidence region for E[A1] ∩W1 is

{x ∈ W1 : b̄1n(x) ≤ αq1/
√
n}

= {x ∈ αW : αb̄n(x/α) ≤ αq1/
√
n}

= {x ∈ αW : b̄n(x/α) ≤ q1/
√
n}

= α{x ∈ W : b̄n(x) ≤ q1/
√
n},

and similarly for Γ[A1] ∩W1.

The same argument works for a rigid motion g, since bg(A)(x) = bA(g−1(x)).
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