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Abstract

The effective dose is the pharmaceutical dosage required to produce a therapeutic response
in a fixed proportion of the patients. When only one drug is considered, the problem is a
univariate one and has been well-studied. However, in the multidimensional setting, i.e., in
the presence of combinations of agents, estimation of the effective dose becomes more diffi-
cult. This study is focused on the plug-in logistic regression estimator of the multidimensional
effective dose. We discuss consistency of such estimators, and focus on the problem of simulta-
neous confidence regions. We develop a bootstrap algorithm to estimate confidence regions for
the multidimensional effective dose. Through simulation, we show that the proposed method
gives 95% confidence regions which have better empirical coverage than the previous method
for moderate to large sample sizes. The novel approach is illustrated on a cytotoxicity study on
the effect of two toxins in the leukaemia cell line HL-60 and a decompression sickness study
of the effects of the duration and depth of the dive.

Keywords: Multidimensional effective dose; drug combinations; Logistic regression; Plug-in
estimation; Simultaneous confidence region.

1 Introduction
In the analysis of biological assays, one is often interested in the covariate, or combination of
covariates, which yields a specific response. For example, when investigating the efficacy of a drug,
the effective dose (ED) is the dose or amount of drug required to produce a therapeutic response in
a desired proportion of the population under study. When this response is binary, a logistic linear
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regression model is a popular choice. That is, let p denote the probability of a positive response,
and let z denote the drug dosage. Then the model is

log(p/(1− p)) = β0 + β1z,

and the dosage associated with a 50% response rate (ED50) is the point −β0/β1. When a combina-
tion of drugs and/or covariates is being studied, the model becomes

log(p/(1− p)) = β0 +
k∑
i=1

βizi.

If only a single zi, say z1, represents a drug and the remaining zi represent covariates such as age
or weight, then the median effective dose is ED50 = −(β1)

−1(β0 +
∑k

i=2 βizi) when the patient-
specific covariates are held fixed. Alternatively, multiple zi can represent drug levels, and one is
interested in the combinations of drugs or other agents required to yield a specific response. Such
instances arise, for example, in Skarin et al. [1] where lymphoma treatments are considered or in
Lang et al. [2]. Another example, considered extensively in [3, 4, 5, 6], is that of analysing the risk
of decompression sickness among deep sea divers based on both the duration and pressure of the
dive. In this setting, when combinations of agents are considered, the median effective dose is the
set

ED50 =
{

(z1, z2, . . . , zk) : β0 +
∑k

i=1 βizi = 0
}
.

Li et al. [3] refer to this as the multidimensional effective dose. In the single drug setting (with
or without covariates), the quantity of interest is univariate, and therefore much easier to handle.
However, for combinations of drugs, the effective dose is a set or hyperplane and is considerably
more complicated to analyse.

In practice, estimation of the mean response is commonly based on a logistic regression ap-
proach. We therefore focus on the plug-in logistic regression estimator of the effective dose.
We provide conditions for consistency of the estimator and we study simultaneous confidence
regions, or supersets, for the true effective dose. That is, we seek a confidence set C such that
P (C ⊃ ED50) ≥ 95%, say. In the univariate setting, the variability of the estimator can be quan-
tified by the standard error. In multidimensional settings, a confidence region provides a clear,
intuitive way of quantifying and visualizing the variability of the estimator.

The first study of this problem was done in Carter et al. [7]. There, large sample simultaneous
confidence regions were derived by inverting Scheffé’s bounds for simultaneous confidence inter-
vals [8]. This approach, however, is very conservative [7]. Further study of this method was carried
out in Li et al. [3], who consider the estimation of both (1) a conditional single-dimensional ef-
fective dose in the presence of covariates and (2) an unconditional multidimensional effective dose
in the linear logistic model. The conditional single-dimensional effective dose was also used by
Chen [9] in the analysis of a dose-time response model. The extensive simulations of Li et al. [3]
show how conservative the Scheffé-inversion method is: Empirical coverage probabilities of 95%
confidence regions vary from 98% to 100% in the two-dimensional linear model.

In this work, we introduce an empirical bootstrap method to compute a confidence region for
the multidimensional effective dose. We study the empirical coverage of the confidence regions
through simulations (see Section 4.3 as well as the supplemental material), and we show that the
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new method has better performance for medium to large sample sizes. Our choice of designs for
the simulations is similar to that of Li et al. [3], in particular to allow for direct comparison. As
compared to Li et al. [3], however, we extend the study to the non-linear regression setting. Notably,
the over coverage of the Carter et al. [7] method is only increased for these cases, and therefore this
is an important situation to consider. The methodology is illustrated on both simulated (Section
4.2) and real data examples (Section 5).

To our best knowledge, the works studying multidimensional effective dose estimation focus on
confidence regions and do not discuss consistency [7, 3, 6, 4]. Here, we fill this gap, by providing
necessary conditions for consistency of the plug-in estimators ÊD100p and ÊD

+

100p. As these are
rather technical, the statement appears in Section A.3 of the Appendix.

2 Notation and Assumptions
Let D ⊂ Rd denote the covariate domain. Assume D to be bounded and closed. Let Y be the
observed binary response and consider estimating the sets

ED+
100p = {z ∈ D : E[Y |Z = z] ≥ p} and ED100p = {z ∈ D : E[Y |Z = z] = p}

where z = {z1, . . . , zd} denotes the multidimensional vector of observed covariates. We assume
that the data can be modelled as a logistic regression with

log

(
E[Y |Z = z]

1− E[Y |Z = z]

)
= β0x0 + β1x1 + . . .+ βkxk = βTx. (2.1)

Here, we use the notation x = {x0, x1, . . . , xk}T to denote the function of the covariates x =
x(z) : Rd 7→ Rk+1, where k + 1 ≥ d. This allows us to emphasize the difference between the
covariates z and how they are used in the model via x = x(z). As an example, suppose that we
have two covariates, z1 and z2, and that the right-hand side of (2.1) is

β0 + β1z1 + β2z2 + β3z
2
2 .

Then we have d = 2 and four parameters (k + 1 = 4). In this case, the function x of the covariates
is given as x(z) = {1, z1, z2, z22}T . We assume x(z) to be continuous on the domain D.

Next, let logit(p) = log(p/(1− p)). Since logit(p) is an increasing function of p and E[Y |Z =
z] = logit-1(βTx), we may re-write

ED+
100p =

{
z ∈ D : βTx ≥ logit(p)

}
and ED100p =

{
z ∈ D : βTx = logit(p)

}
.

We estimate these using the plug-in estimators

ÊD
+

100p =
{
z ∈ D : β̂Tnx ≥ logit(p)

}
and ÊD100p =

{
z ∈ D : β̂Tnx = logit(p)

}
,

where β̂n is the maximum likelihood estimator of β.
Let z1, . . . ,zn denote the observed covariates and let xj = x(zj), j = 1, . . . , n. Let X denote

the design matrix, which is of size n×(k+1). With this notation, the maximum likelihood estimator
β̂n is asymptotically normal with mean β and variance Σ/n, consistently estimated by Σ̂n/n,where

Σ̂n = n
(
XTdiag{p̂1(1− p̂1), . . . , p̂n(1− p̂n)}X

)−1
, (2.2)
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with p̂j = logit−1(β̂Tn zj), for j = 1, . . . , n.
One may also be interested in sets of the form

ED−100p = {z ∈ D : E[Y |Z = z] ≤ p}
= {z ∈ D : E[1− Y |Z = z] ≥ 1− p} .

In this case, the methodology would be similar to ED+
100p (by considering failures instead of suc-

cesses as indicated above), and we therefore focus on ED+
100p and ED100p in what follows.

3 Calculating confidence regions

3.1 Scheffé’s method
The existing methodology for simultaneous confidence regions is based on Scheffé’s uniform con-
trast bounds. As shown in Carter et al. [7], supx n[xT (β̂n − β)]2/xTΣx ≤ Yn, where Yn con-
verges to Y, a χ2(k + 1) random variable. Let qα denote the upper quantile of Y, a value such that
P (Y > qα) = α. The asymptotic confidence region for ED100p is defined as

CRS,1−α

=
{
z : n(β̂Tnx− logit(p))2 ≤ qα xTΣx

}
=

{
z : β̂Tnx ≥ logit(p)−

√
qα xTΣx/n

}
∩
{
z : β̂Tnx ≤ logit(p) +

√
qα xTΣx/n

}
. (3.3)

The asymptotic confidence region for ED+
100p is then defined as

CR+
S,1−α =

{
z : β̂Tnx ≥ logit(p)−

√
q2α xTΣx/n

}
.

Note that taking q2α (instead of qα) accounts for the fact the we only take one side of the square root.
In practice, the covariance matrix Σ can be estimated as in (2.2). It is possible that the confidence
region as defined above is empty, but this occurs rarely for larger sample sizes. As shown in Carter
et al. [7], the probability that CR+

S,1−α covers ED+
100p is at least 100(1 − α)%. As we show in

the simulations which follow, this method (although asymptotically correct) is quite conservative,
resulting in frequent and extensive over-coverage.

3.2 New algorithm
The novel approach to calculating a simultaneous confidence region introduced here is a bootstrap
procedure. Our original motivation for this approach came from the setting d = 1, where we found
that a simple bootstrap approach had the best overall performance. Indeed, when d = 1, our method
is equivalent to univariate bootstrap methods. The new approach also has some appealing proper-
ties, and these are summarized in Proposition A.2 in the Appendix. In particular, the empirical
quantile is invariant under rotations and equivariant under re-scaling.

Below, we describe the empirical parametric bootstrap algorithm to calculate the confidence
region CR+

1−α for ED+
100p. A nonparametric approach may also be taken, although we do not give

the details here.
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Bootstrap-based confidence regions

Suppose that we have estimated β̂n and the variance Σ̂n in the logistic regression model based on
an available data set with sample size n.

1. Generate β̂∗n,i ∼ N(β̂n, Σ̂n/n) independent random variables for i = 1, . . . , B.

2. For each β̂∗n,i calculate the effective dose estimate

ÊD
+ ∗
100p,i =

{
z ∈ D : β̂∗Tn,i x ≥ logit(p)

}
.

3. Compute

K =
B⋂
i=1

ÊD
+ ∗
100p,i,

and then calculate ξi = ρ(ÊD
+ ∗
100p,i, K). Here, ρ denotes the Hausdorff distance on sets. A

precise definition is given in the Appendix, see (A - 6).

4. Calculate γα, the 100(1− α) sample percentile of the ξi observations. Finally, compute

CR+
1−α =

⋃
i: ξi<γα

ÊD
+ ∗
100p,i.

In the algorithm, if K = ∅, then the resulting confidence region is the empty set, and therefore
uninformative. In practice, this becomes an issue for smaller sample sizes. In most cases, this
happens because one of the sets ÊD

+ ∗
100p,i is empty. We considered several solutions, and the optimal

of these was to simply remove all empty ÊD
+ ∗
100p,i from the algorithm apriori. This is done by

appropriately modifying step two above.
The proportion of sets ÊD

+ ∗
100p,1, . . . , ÊD

+ ∗
100p,B which is contained in CR+

1−α is at least b(1 −
α)Bc/B. The confidence region thus creates a covering set which contains a desirable propor-
tion of the observed bootstrapped samples. This assertion is formally stated in the Appendix (see
Proposition A.2). We also prove that the bootstrap confidence region is invariant under rotations
and satisfies a natural scaling property.

Finally, we note that to compute the 100(1− α)% confidence region for ED100p we take

CR1−α = CR+
1−α/2 ∩ CR−1−α/2,

where the algorithm for finding CR−1−α/2 is given in the Appendix. This “intersection” approach is
similar to the standard CI for the mean, in a sense that the latter can be written as an intersection of
the unbounded intervals with endpoints symmetric about the sample mean. Equation (3.3) shows
that the same is also true for the confidence regions calculated as proposed in Carter et al. [7].
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4 Simulation studies

4.1 Computation
It was noted in Li et al. [3, page 113] that their conditional univariate approach is simpler to im-
plement than a multivariate approach (CRS,1−α in this paper). However, we do not find this to be
the case, and CRS,1−α is quite easy to calculate in, for example, the R software. All computations
and plots shown in this paper were done using R and/or Matlab. Matlab’s imaging toolbox con-
tains the function bwdist, which allows for easy computation of the Hausdorff distance, required
for calculation of CR1−α. This function is available both for d = 2 and d = 3, but not for higher
dimensions. In all computations, including the simulations which follow, it was necessary to dis-
cretize the underlying domain. For d = 2, we used 4012 pixels, and when d = 3, we used 1013

voxels.

4.2 Method comparison
To visually compare the two approaches, we consider two parametric models:

E[Y |Z = z] = −6 + 6z1 + 6z2, (4.4)
E[Y |Z = z] = −6 + 6z1 + 6z2 + 10z21 + 3z1z2 + z22 . (4.5)

For the linear model (4.4), the median effective dose is the straight line ED50 = {(z1, z2) ∈ D :
z2 = 1 − z1}. For the quadratic model (4.5), it is the curve ED50 = {(z1, z2) ∈ D : 6z1 + 6z2 +
10z21 + 3z1z2 + z22 = 6}.

Examples of both confidence region methods for both models are shown in Figure 1. In these
examples, and in the simulations in Section 4.3, we assume that data is collected according to a
design with κ = 36 points uniformly spaced over the domain D = [0, 1]2 in a grid-like pattern (this
is design one in Figure 6 of the Appendix). In Figure 1, for each point in the design, we assume
m = 10 replicates, for an overall sample size of n = κm = 360.

For the linear model, the shapes and sizes of the two methods appear quite similar. However,
in the quadratic model, CRS,0.95 covers 0.803% of the domain while CR0.95 covers only 0.718%.
The fact that CR0.95 is smaller than CRS,0.95 for the quadratic model is probably caused by the fact
that Scheffé’s bounds are conservative, and this is particularly emphasized with an increase in the
difference between k+ 1 (the number of parameters in the model) and d (the numbers of agents, or
covariates). Indeed, the region CR0.95 is nearly 11% smaller than the region CRS,0.95.

Notably, the confidence regions show that there is considerable variability in the quadratic
model, in that the function β̂Tnx dips down with some frequency in the upper right corner of the do-
main. This is consistent with samples of ÊD50 (shown in Figure 8 in the supplementary material).
Note how much additional information is revealed about the variability of ÊD50 through viewing
the confidence region in this case. In particular the true function f(z) = βTx does not exhibit
such “dips” on D (Figure 7 of the supplementary material), and neither does the function β̂Tnx (not
shown).
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Figure 1: Confidence regions (gray) for ED50 (bold) under the linear model in the top (4.4) and the
quadratic model in the bottom (4.5); ÊD50 is shown as the thin line. The region CRS,0.95 is shown
on the left and the region CR0.95 is shown on the right.

4.3 Empirical coverage results
We next use simulations to study the behaviour of the new bootstrap algorithm, and to compare it
with the method proposed in Carter et al. [7]. Each simulation is the result of 1000 Monte Carlo
samples, and we also used B = 1000 in the bootstrap algorithm throughout. Whenever possible,
the data in each simulation was the same for the different confidence regions.

We again consider both the linear model (4.4) and the quadratic model (4.5) with domain D =
[0, 1]2. We assume that the true Σ is unknown. As in the previous section, we use design 1 in
Figure 6 of the Appendix, with κ = 36. The value of m is chosen as 1, 10 and 100 for three overall
samples sizes of n = 36, 360, 3600. The results of the simulations are shown in Table 1. Note that
we did not report the results for the quadratic model when n = 36. This is because there was too
large a proportion of observations in “complete separation” [10] in this case.
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Table 1: Empirical coverage probabilities of 95% confidence regions for ED100p using the maxi-
mum likelihood estimate of Σ for d = 2. Results not statistically different from 0.95 are shown
in bold. The corresponding sizes of the confidence regions, measured as the mean proportion of
the domain covered by the region, are given in brackets. SCH denotes Scheffé’s method, while CR
denotes the new bootstrap approach.

linear quadratic

n p SCH CR SCH CR

36 .1 .989 .995 * *
(.47) (.54) * *

.5 1.00 .998 * *
(.93) (.95) * *

.9 .991 .993 * *
(.47) (.53) * *

360 .1 .988 .977 1.00 .994
(.18) (.17) (.34) (.29)

.5 .988 .946 1.00 .995
(.19) (.20) (.51) (.40)

.9 .990 .985 .996 .973
(.18) (.19) (.69) (.66)

3600 .1 .995 .980 1.00 .971
(.06) (.05) (.06) (.05)

.5 .986 .944 .999 .982
(.06) (.07) (.06) (.05)

.9 .991 .973 .999 .975
(.06) (.06) (.08) (.07)

For the medium and large samples sizes (n = 360, 3600), we find that CR0.95 outperforms
CRS,0.95: CR0.95 has better coverage with similar region size in the linear model, and better or
equivalent coverage and smaller region size for the quadratic model. Specifically, when n = 360,
empirical coverage decreased on average by 2% in the linear model and 1% in the quadratic model
(these are absolute decreases, not relative ones); when n = 3600 empirical coverage decreased on
average by 2.5% in the linear model and 2% in the quadratic model. The proportion of the domain
covered decreased on average by 0.06 when n = 360 and by 0.01 when n = 3600 for the quadratic
model, and remained the same, on average, for the linear model. When n = 36, however, CRS,0.95

and CR0.95 behave comparably. We believe that this is caused by the additional variability due to
the estimation of the variance matrix. Much more extensive simulations for d = 2 are provided
in the Supplementary Online Material. These include additional models and various designs. The
results are similar to those presented here for the linear and quadratic models, but this does depend
a little on the model and on the design.

We also considered two simple models for the higher dimensional d = 3 case: the true linear
model was logit(p) = −6 + 3z1 + 3z2 + 3z3 and the true quadratic model was logit(p) = −6 +
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Table 2: Empirical coverage probabilities of 95% confidence regions for ED100p for d = 3, as-
suming that Σ is known. Results not statistically different from 0.95 are shown in bold. The
corresponding sizes of the confidence regions, measured as the mean proportion of the domain
covered by the region, are given in brackets. SCH denotes Scheffé’s method, while CR denotes the
new bootstrap approach.

linear quadratic

n p SCH CR SCH CR

2160 .1 .991 .977 .997 .937
(.17) (.16) (.16) (.13)

.5 .983 .921 .999 .938
(.10) (.09) (.17) (.14)

.9 .997 .988 1.00 .961
(.01) (.01) (.10) (.08)

3z1 + 3z2 + 3z3 + z21 + z22 + z23 . The design was similar to design one, in that data were observed
on a uniform grid inside D = [0, 1]3 with κ = 63 and m = 10. The domain was the same for both
models, and we considered only the setting when the true Σ is known (cf. additional simulations
for d = 2 available in the Appendix). The results are shown in Table 2.

5 Examples

5.1 A decompression sickness study
Our first example comes from a decompression sickness (DCS) study from the University of Wis-
consin, Madison. DCS is most often associated with diving, but can be experienced in other de-
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Figure 2: 95% confidence regions for ED1 based on Scheffé’s upper bound (left) and the new CRS
quantiles (centre). The difference between the sets is shown on the left (CRS,0.95 \ CR0.95 in light
and CR0.95 \ CRS,0.95 in dark gray). ÊD1 is superimposed throughout for reference.
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Figure 3: Estimates of ED100p for different values of p for the DCS data. Data points with response
equal to 0/1 are shown as closed/open circles.

pressurisation events such as caisson working (i.e. during the building of dams or tunnels) or
unpressurized flight. In this study, sheep were exposed to a variety of exposure pressures and du-
rations in a pressure chamber. DCS is caused by dissolved gasses vaporising on depressurization
forming dangerous bubbles of gas throughout the body. The bubbles can form in different locations
in the body, and therefore lead to a variety of symptoms as well as severities. In the study, cen-
tral nervous system and respiratory DCS as well as limb bends and mortality were included in the
recorded outcomes. The sample size is n = 1108. The data set has been considered extensively in
Li et al. [3, 4, 5], Li and Wong [6] and we refer to these papers for further details on data collection
and analysis. An alternative approach to the analysis was also presented in Li and Ma [11]. Here,
we compare our methods to those of Li et al. [3] where a linear model was fit for the mortality
response. The data has been updated several times in the past few years, and therefore our results
differ slightly from those found in Li et al. [3].

When the survival response is considered, a simple linear model gives an adequate fit to the
data. The effective dose (with death denoted as “success”) is thus estimated as

ÊD100p = {−27.64 + 3.78z1 + 10.28z2 = logit(p)},

where we take D = [1.3, 3.6]× [1.2, 1.8] with z1 and z2 denoting the base 10 logarithm of duration
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and pressure of the dive. The data and results for ÊD100p are shown in Figure 3. Fix p = 0.01.

From Theorem A.1 we know that, under a linear model, the plug-in estimator ÊD1 is consistent.
We are also interested in the variability of ÊD1, and therefore we calculate simultaneous confidence
regions for ED1. Results for CRS,0.95 and CR0.95 are shown in Figure 2. The regions are similar
in size, covering 30% and 29% of the domain respectively. However, CR0.95 appears more centred
around ÊD1, particularly for large values of z1.

5.2 Cytotoxicity in the leukemia cell line HL-60
Carter et al. [7] consider a cytotoxicity data set where the effect of two toxins, methylmethanesul-
fonate (MMS) and phorbol 12-myristate 13-acetate (PMA), on the human promyeloctic leukemia
cell line HL-60 was evaluated. Both MMS and PMA have demonstrated carcinogenic properties,
and it was of interest to understand their interactive properties. In the study, 16 treatments were
considered with 83 to 98 observations per treatment, for a total sample size of 1436. The data and a
detailed analysis is available in Carter et al. [7]. There, a logistic regression model was fit resulting
in the plug-in estimate

ÊD100p = {−1.330− 0.084z1 + 0.159z2 + 0.003883z21 − 0.001308z22 = logit(p)},

with z1, z2 corresponding to MMS/10 and PMA, respectively. Several estimates for different values
of p are shown in Figure 4. The appropriateness of the quadratic model is at first counterintuitive,
however, due to lysis, certain treatments can become so toxic that cells become uncountable [7].
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Figure 4: Estimates of ED100p for different values of p for the cytotoxicity data. Locations where
data was observed are marked with an “x” (the treatments had 83 to 98 observations each).
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Thus, an increase in perceived survival at higher toxicities is an appropriate result in this experi-
ment.

The fitted model is non-linear, however, we can preform a simple check for consistency as
follows, based on the results given in Section A.3. The determinant of the Hessian matrix for the
model f(z) = β0 +β1z1 +β2z2 +β3z

2
1 +β4z

2
2 is equal to 4β3β4. If this quantity is negative, then all

critical points of f(z) are saddle points, and we would therefore have consistency. Now, if β3 > 0
and β4 < 0, then 4β3β4 < 0. From Carter et al. [7], the p-values for each of these tests are smaller
than 0.0002 and 0.0001 respectively. Therefore, under the given model, the estimators ÊD100p are
consistent.

With such a large sample size, we would expect little variability in the values of β̂n. However,
it is not immediately clear how this translates to the variability of ÊD100p. We therefore calculated
95% confidence regions for ED50 using Scheffé’s upper bound (Figure 5, left) and the new bootstrap
algorithm (Figure 5, centre). The new method yields a tighter confidence band. Indeed, here, the
percentage of the domain covered is 14.92%, whereas using Scheffé’s upper bound 18.31% of the
domain was covered. Figure 5 (right) shows that CR0.95 is almost entirely contained in CRS,0.95.
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Figure 5: 95% confidence regions for ED50 based on Scheffé’s upper bound (left) and the new
method (centre). The difference between the sets is shown on the left (CRS,0.95 \ CR0.95 in light
and CR0.95 \ CRS,0.95 in dark gray). ÊD50 is superimposed throughout for reference.

Carter et al. [7] also calculate confidence regions using Scheffé’s method for p = 0.4, 0.5, and
0.6. These regions overlap, and hence Carter et al. [7] conclude that we “cannot confidently dis-
tinguish among the respective ED100p sets.” Although not shown, the regions in this case using the
new method would also overlap. However, the estimates ÊD100p1 and ÊD100p2 are highly positively
correlated, and therefore such an ad-hoc comparison is probably overly conservative. The question
of how to correctly account for this correlation is also interesting and important, but is beyond the
scope of this work.

6 Discussion
When studying confidence intervals in the univariate setting, one is typically looking for two prop-
erties: the confidence interval should be (1) as small as possible while (2) reaching the nominal
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level, but without under-coverage. In our context, the observed data comes from a non-Euclidean
space, so some additional properties are desirable: Confidence regions provide visual information
about the variability of our estimates, and therefore the shape of the confidence regions should re-
flect the behaviour of the estimates and have the ability to detect local variability. For practitioners,
it would also be desirable that the confidence region be relatively easy to calculate.

In this work we have focused on two methods of calculating a confidence region for a multi-
dimensional effective dose. Both confidence regions CRS,0.95 and CR0.95 all nicely show the lo-
cal variability of the effective dose estimators. However, CRS,0.95 systematically exhibits over-
coverage. The new empirical bootstrap algorithm introduced here yields the region CR0.95 which
outperforms CRS,0.95 in terms of empirical coverage and/or size of region for moderate and large
samples sizes. For smaller sample sizes, practitioners may therefore prefer to use CRS,0.95 due to
its simplicity. On the other hand, for medium to large sample sizes, such as those of the examples
in Section 5, the proposed method provides confidence regions with better coverage properties.

Previous work on the problem of confidence regions for the effective dose is, to our best knowl-
edge, rather limited. The region CRS,1−α was introduced in Carter et al. [7] and studied extensively
in Li et al. [3] for the parametric model. Li et al. [3] also consider the problem of the conditional
effective dose (i.e. the effective dose obtained after holding certain covariates fixed). Although
our simulations do not explore this, the new method presented here can also be applied in this
setting. We conjecture that empirical coverage will be similar, particularly for models without in-
teractions, as fixing a covariate essentially changes the behaviour of the intercept in such cases.
This conditional approach would be most appealing in higher dimensions, since relationships are
more difficult to visualize when d > 2.

Li et al. [5] also study an extension of this approach to the case where f̂n is estimated using
a semi-parametric model. They consider two methods: one is based on a theoretical bound of
maxn(f̂n(z) − f(z))2 similar to the parametric case, and the second is based on empirical esti-
mation of the theoretical quantiles of maxn(f̂n(z)− f(z))2 via a parametric bootstrap procedure.
However, their theoretical bounds in this setting are incorrect (this is the reason for the discrepancy
between the bootstrap and theoretical procedure noted in Li et al. [5, Section 4.1 and Figure 1]).
The bootstrap approach, although quite conservative, is more promising. However, although the
semi-parametric estimates are insensitive to the choice of bandwidth, the parametric bootstrap con-
fidence regions increase in size and coverage as h decreases. This is not surprising as the variance
depends on

√
nh in the denominator. The question of optimal choice of h was not considered in

Li et al. [3]. One could also try the region CR1−α in the semi-parametric setting, and we intend to
study this problem thoroughly in a future work. Important developments in level set estimation in
the nonparametric model with applications to the effective dose estimation problem are Mammen
and Polonik [12], Mason and Polonik [13] (see also the references in Mason and Polonik [13]). In
particular, Mammen and Polonik [12] study the problem of construction a confidence region for
a density level set using kernel density estimators, which is closely related to the semi-parametric
effective dose setting.

The confidence region CRS,0.95 is asymptotic, in that it uses the asymptotic distribution quan-
tiles. For smaller sample sizes, one could potentially either bootstrap these quantiles or replace
them with their non-asymptotic counterparts. Thus, in CRS,0.95 one could replace the asymptotic
χ2 quantile with its appropriate F distribution version [8]. However, these quantiles would be larger,
and CRS,0.95 already exhibits over-coverage. Another potential avenue here would be to consider
the method of Piegorsch and Casella [14] (see also Casella and Strawderman [15]), but we do not
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explore this here. Notably, this modification would greatly increase the computational complexity
of the regions CRS,0.95.

Of the confidence regions consider here, the new confidence region CR1−α is more computa-
tionally intensive and requires some simulations. On the other hand, the region CRS,1−α may be
calculated directly. However, in all of the two-dimensional examples considered here, CR1−α took
less then one minute to compute on a 2.4 GHz dual core Macintosh laptop. This could probably be
reduced even further by studying more efficient programming techniques. Thus, the time require-
ments to calculate these regions do not carry great practical constraints. Matlab script calculating
all the regions for the example of Section 5.2 will be made available online via the Dryad Digi-
tal Repository (datadryad.org).We intend to create an R version of this program in the near
future, and make it available online, also via the Dryad Digital Repository.

A Appendix

A.1 Some additional notation
We denote Euclidean distance for z, y ∈ Rd as |z− y|. Then, for a set A ⊂ Rd and ε > 0 we define
the dilation of A as Aε = {z ∈ Rd : |z − y| ≤ ε, for some y ∈ A}. The complement of a set
A is denoted as Ac while the closure of a set A is denoted as A. Finally, we define the Hausdorff
distance between two sets

ρ(A,B) = inf{ε > 0 : A ⊂ Bε, B ⊂ Aε}. (A - 6)

A.2 Algorithm for confidence region for ED−100p

Bootstrap-based confidence region

Suppose that we have estimated β̂n and the variance Σ̂n in the logistic regression model based on
an available data set with sample size n.

1. Generate β̂∗n,i ∼ N(β̂n, Σ̂n/n) independent random variables for i = 1, . . . , B.

2. For each β̂∗n,i calculate the effective dose estimate

ÊD
−∗
100p,i =

{
z ∈ D : β̂∗Tn,i x ≤ logit(p)

}
.

3. Compute

K =
B⋂
i=1

ÊD
−∗
100p,i,

and then calculate ξi = ρ(ÊD
−∗
100p,i, K). Here, ρ denotes the Hausdorff distance on sets (see

(A - 6)).
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4. Calculate γα, the 100(1− α) sample percentile of the ξi observations. Finally, compute

CR−1−α =
⋃

i: ξi<γα

ÊD
−∗
100p,i.

A.3 Consistency
Here, we provide conditions necessary of consistency, by extending the work of Molchanov [16]
and Cuevas et al. [17] on level sets to the logistic regression setting. A very similar problem was
recently studied in Jankowski and Stanberry [18], and the following result follows directly from the
proof of Jankowski and Stanberry [18, Theorem 3.1] as well as consistency of the maximum likeli-
hood estimator β̂n. Following Molchanov [16], we say that a random set An is strongly consistent
(for A) if for all compact sets K, limn→∞ ρ(An ∩K,A ∩K) = 0 almost surely.

Proposition A.1. Let β denote the value of the parameters in model (2.1), and assume that x(z) is
continuous. If β̂n → β almost surely, then ÊD

+

100p is strongly consistent for ED+
100p, if

{z ∈ D : βTx > logit(p)} = ED+
100p (A - 7)

holds. Furthermore, ÊD100p is strongly consistent for ED100p, if both (A - 7) and

{z ∈ D : βTx < logit(p)} = {z ∈ D : βTx ≤ logit(p)} = ED−100p (A - 8)

hold.

The two conditions (A - 7) and (A - 8) can be re-stated mathematically in different ways; for
example, (A - 7) is equivalent to ED+

100p being regularly closed. In terms of the response surface,
condition (A - 7) requires that f(z) = βTx(z) have no local maxima on ED100p while condition
(A - 8) requires that f(z) = βTx(z) have no local minima on ED100p. Thus, in the linear model,
we are guaranteed to have consistency if at least one βi, i = q, . . . , k is non-zero (excluding the
intercept term). For other models, one could perform a heuristic check of critical points of f(z),
if x is differentiable as a function of z. As an example, consider the model f(z) = β0 + β1z1 +
β2z2 + β3z1z2. The determinant of the Hessian matrix is −β2

3 < 0. Thus, if β3 is non-zero, any
critical points of f(z) are saddle points and therefore no local minima/maxima exist in the domain
of f, and hence also on ED100p.

A.4 Technical arguments
Proposition A.2. Let A1, . . . , AB be a collection of nonempty subsets of Rd.

1. The proportion of sets ÊD
+ ∗
100p,1, . . . , ÊD

+ ∗
100p,B which is contained in CR+

1−α is at least b(1−
α)Bc/B.

2. Consider γ1 ≤ γ2. Then ∪{Ai, i = 1, . . . , B : ρ(Ai, KB) < γ1} ⊆ ∪{Ai, i = 1, . . . , B :
ρ(Ai, KB) < γ2}.
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3. Fix a rigid motion (a transformation consisting of rotations and translations) g ∈ E+(d) and
let Ci = g(Ai). Then

g (∪{Ai, i = 1, . . . , B : ρ(Ai, Kn) < γ}) = ∪{Ci, i = 1, . . . , B : ρ(Ci, g(KB)) < γ}.

4. Fix α > 0 and let Ci = αAi. Then

∪{Ci, i = 1, . . . , B : ρ(Ci, αKB) < αγ} = α {∪{Ai, i = 1, . . . , B : ρ(Ai, KB) < γ}} .

Proof of Proposition A.2. 1. By definition, γq,B is such that bqBc of the observed sets satisfy
ρ(Ai, KB) ≤ γq,B.

2. This again follows from the definition.

3. It is well known that ρ(A,B) = supz∈D |dA(z) − dB(z)|, where dA(·) denotes the distance
transform of A [19], and also that dg(A)(z) = dA(g−1(z)) [20, see e.g.]. It follows that

ρ(g(Ai), g(KB)) = ρ(Ai, KB),

which implies the result.

4. The same argument as for rigid motions works for dilations by α > 0.

Acknowledgements
The first author thanks Georges Monette from York University and Ruxandra Pinto from Sun-
nybrook Hospital for helpful discussions. All authors are grateful to Jialiang Li for sharing the
DCS data set. Parts of this work were made possible by the facilities of the Shared Hierarchical
Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul
Canada.

References
[1] Skarin, AT, Canellos, GP, Rosenthal, DS, Case, DC, MacIntyre, JM, Pinkus, GS, Moloney,

WC, Frei, E. Improved prognosis of diffuse histiocytic and undifferentiated lymphoma by use
of high dose methotrexate alternating with standard agents (M-BACOD). Journal of Clinical
Oncology 1983; 1:91–98.

[2] Lang, DR, Kurzepa, H, Cole, MS, Loper, JC. Malignant transformation of BALB/3T3 cells
by residue organic mixtures from drinking water. Journal of Environmental Pathology &
Toxicology 1980; 4:41–54.

[3] Li, J, Zhang, C, Nordheim, E, Lehner, C. On the multivariate predictive distribution of multi-
dimensional effective dose: a Bayesian approach. Journal of Statistical Computation and
Simulation 2008; 78(5):429–442.

16



[4] Li, J, Nordheim, E, Zhang, C, Lehner, C. Estimation and confidence regions for multi-
dimensional effective dose. Biometrical Journal 2008; 50(1):110–122.

[5] Li, J, Zhang, CM, Doksum, KA, Nordheim, EV. Simultaneous confidence intervals for semi-
parametric logistic regression and confidence regions for the multi-dimensional effective dose.
Statistica Sinica 2010; 20(2):637659.

[6] Li, J, Wong, WK. Two-dimensional toxic dose and multivariate logistic regression, with
application to decompression sickness. Biostatistics 2011; 12(1):143155.

[7] Carter, W, Chinchilli, V, Wilson, J, Campbell, E, Kessler, F, Carchman, R. An asymptotic
confidence region for the ED100p from the logistic response surface for a combination of
agents. The American Statistician 1986; 40(2):124–128.
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