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Abstract

Each year influenza causes widespread disease globally. To combat the virus, vacci-
nation programs are in place, but with the high mutation rate of influenza this vaccine
needs to be updated every year. There is a high level of variability in the Hemagglutinin
(HA) glycoprotein component of seasonal influenza strains. A better understanding of
HA evolution over influenza seasons is needed to better advise vaccine strain devel-
opment. We have developed a new method for clustering influenza viral sequences.
Herewithin, we apply the method to the highly variable influenza A H3N2 HA vi-
ral glycoprotein. Our data comprises 1960 viral protein sequences active from 1998
to 2012, and our methodology aggregates these sequences into 23 clusters. Based on
these clusters, we provide an investigation of past vaccines and the dominant cluster
in each influenza season. We also investigate evolutionary pressures of closely matched
circulating and vaccine strains HA glycoproteins. We end with a discussion of future
work.

1 Introduction

Influenza viruses are negative stranded and segmented RNA viruses which cause serious
and recurrent respiratory disease globally. The influenza season (or ‘Flu Season’), which
occurs each year in the winter months of each hemisphere, is associated with significant
human mortality and morbidity worldwide[1]. Influenza A and B strains cause seasonal
influenza, however, in recent years, influenza A has caused much of the burden[1].

Influenza A viruses are divided into subtypes based the hemagglutinin (HA) and
neurominidase (NA) proteins that lie on the surface of the virus. The HA protein has
been identified to be the major antigenic component of the influenza virus[2]. Seasonal
flu epidemics are normally associated with small mutations in the HA protein (antigenic
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drift), which allows the virus to evade host immune systems and increases the lifetime
susceptibility of the host[2].

Vaccination is the best way to prevent or lessen the severity of seasonal flu. Each
year, the seasonal flu vaccine is updated based on a study of the previous year’s circu-
lating strains[1]. However, because of the high mutation rate of the seasonal influenza
strains it is difficult to determine what the appropriate vaccine strains should be[3]. A
study of the HA’s evolutionary course can better inform vaccine recommendations.

Phylogenetic analysis of virus strains can help determine evolutionary patterns. Re-
cent advances in molecular biology and computational tools have enabled phylogenetic
analysis of small components, to the entire influenza genome[4, 5, 6, 7, 8]. However,
few pay attention to the influenza swarms or clades regarded as the main target driven
by evolutionary forces [9, 10]. Additionally, in those studies that do consider the de-
termination of clades, the statistical methods can be improved. For example, in [9],
some components of the methodology include user-based decisions, so the method is
not fully automatic. Also, in [10] the method is computationally complex, and could
be improved.

We present a new formal cluster-based technique that can be used to study the
evolution of influenza. The method is fully automatic with computational complexity
O(N). Herewithin, we employ our methodology to study the evolution of the HA com-
ponent of the influenza A H3N2 virus, (a major cause of seasonal influenza), and the
relationships between this circulating virus and the recommended vaccine strains. We
present our data acquisition and methodology in Section 2. In Section 3, we show that
our new method can be used to uncover interesting trends in HA evolution, including
a relationship between the vaccine and dominant circulating strains. Our results are
discussed in Section 4, and this section ends with a critique of our methodology and
directions for future work.

2 Data Description and Methodology

2.1 Data acquisition

The Influenza Research Database (IRD) is an online repository of influenza sequences
obtained through voluntary contributions[11]. It is publicly available online at www.fludb.org.
The sequences employed in this study were obtained from this data base using the cri-
teria listed in Table 2.1.

This search yields a collection of 1947 sequences of the H3 type HA gene isolated
between September 1998 and July 2012 from locations around the globe. Each sequence
is made up of 1698 nucleotides plus a stop codon.

To understand the relationship between the observed influenza A strains and the
vaccines used, we also include vaccine strains in the data set. The vaccine sequence
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Table 1: IRD criteria: All other settings kept default or blank.

Option Criteria

“Data to return”: protein
“Virus type”: A
“Sub type”: H3N2
“Select segments”: HA
“Complete sequences”: Complete Segments Only
“Date range”: 1998 to 2012
“Host”: Human
“Geographic grouping”: All

Advanced options

“Month Range”: Sep 1998 to July 2012
“Remove Duplicate Sequences”: Yes

information was obtained from the World Health Organization[12], and is listed in
Table 2.1. It includes all vaccine strains used from September 1998 to July 2012. Three
vaccine strains were already included in the dataset, namely “A/Brisbane/10/2007”,
“A/Perth/16/2009” and “A/Texas/50/2012”. All others were input manually. Note
that this resulted in a total of 1960 sequences in the database.

The resulting 1960 sequences were then translated into the corresponding amino
acids using Perl or MEGA software[13]. This was done separately for the virus and
vaccine strains. The transformation resulted in 566 amino acids in each of the 1960
sequences. We then performed multiple alignment for all of the 1960 protein sequences
using MUSCLE software[14]. All sequences were easily aligned with only a few gaps
present. Finally, we converted the character records of the amino acids into numerical
values using Perl. This results in 1960 observations with 566 categorical variables, each
containing 21 categorical states (20 for each kind of amino acid and one to represent a
gap).

Each of these 1960 sequences is related to a calendar year, country and city of
isolation, inferred from the sequence name (see, for example, Table 2.1). For the
1947 sequences obtained from the IRD, we can also obtain the date of isolation, which
allowed us to partition the data into influenza seasons (October 1st through September
30th).

Files containing both the pre- and post-processed data are provided as supplemen-
tary material, and are also available online at www.math.yorku.ca/~hkj/Research.

3



Table 2: Vaccine sequences in the dataset.

Stain Name Number of sequences Accession Number

A/Moscow/10/99 2 AY531035, DQ487341
A/Fujian/411/2002 2 CY088483, CY112933
A/California/7/2004 1 CY114373
A/Wisconsin/67/2005 4 CY033646, CY163936

CY114381, EU103823
A/Brisbane/10/2007 3 CY035022, CY039087

EU199366
A/Perth/16/2009 1 GQ293081
A/Victoria/361/2011 1 KC306165
A/Texas/50/2012 2 KC892248, KC892952

2.2 Clustering the sequences

To identify clusters of viral sequences, we use the following methodology.
Distances between any two sequences are calculated using Hamming distance[15].

For two sequences, A = {a1, . . . , a566} and B = {b1, . . . , b566} the Hamming distance
is defined as

ds(A,B) =

566∑
i=1

I(ai 6= bi), (1)

where I(E) is the indicator function equal to one if E is true, and is zero otherwise. Note
that although ai, bi ∈ {1, . . . , 21}, they are categorical in nature, and the Hamming
distance preserves this property. Heuristically, the Hamming distance between any
two HA sequences is the number of locations with different amino acid expressions.

The dimension of our data set is 21566, which is not computationally manageable.
We therefore perform some dimension reduction before proceeding with our clustering
approach. The main idea behind our dimension reduction is to select a smaller number
of sites (from the 566 amino acid sites) to use in our analysis. This is a reasonable
approach, as is it well known that parts of HA sequences are well-conserved[16]. To
identify the most variable (equivalently, least conserved) sites, we use the notion of
entropy.

Suppose that X denotes a categorical random variable with distribution given by
P (X = k) = pk, k = 1, 2, . . . , 21. The entropy of X is then defined as

H(X) = −
21∑
k=1

pk log pk . (2)
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In our context, X represents the amino acid state with k = 1, . . . , 21 possible categories,
and pk denotes the observed relative frequency at the site (with frequencies obtained
from the 1960 observations). Using (2), we compute the entropy for each of the 566
sites. Note thatH(X) is always positive, and larger entropy indicates greater variability
at a site. In other words, sites with larger entropy contain more variability in their
amino acid states. In our approach, the 566 entropies (one for each site) are sorted
increasingly. Sites with entropy equal to zero were removed, as there is no amino acid
variability in these sites and hence no useful information for clustering. Sites where
1959 observations were equal, were also removed. Finally, we used a Gaussian mixture
model to cluster the remaining entropies[17]. The algorithm results in 5 classes of
entropies. We identify the class with the largest entropies as the sites with the greatest
variability, and use these sites to cluster the sequences. This class contains 62 sites,
which allows us to reduce the dimension to 2162. That is, our data is now made up of
1960 sequences, where each sequence is of length 62.

To cluster the dimension reduced data set, we use the Hamming distance vector (HD
vector) algorithm[20]. To understand the approach, consider a general set-up where p
nominal categorical attributes are of interest and the jth attribute is categorized by
mj levels. The categorical sample space, Ω, is defined as the collection of all possible p-
dimensional vectors of states. For us, mj = 21 for each j, and j = 1, . . . , 62. Therefore,
each sequence can be seen as a vector of length 62 (p = 62), and each element of the
vector is a value taken from one of 21 (mj = 21 for all j) possible categories.

Any given dataset, which in our case can be represented as {A1, . . . , A1960}, gives
a distribution of distances on the sample space Ω from a fixed reference position
in Ω. We denote this fixed reference position as S = {s1, . . . , sp}. For a general
dataset, we use n to denote the sample size (here, n = 1960). Recall the defini-
tion of Hamming distance given in (1), and note that it will take values in 0, 1, 2, . . . , p.
The algorithm relies on the HD vector, which is defined as a (p + 1)-element vector
U(S) = {U0(S), U1(S), . . . , Up(S), } where

Uq(S) =
n∑
j=1

1(ds(Aj , S) = q), q = 0, . . . , p.

Thus, Uq(S) counts the number of all observations with Hamming distance to the given
reference position S equal to exactly q.

Using the HD vector as a measure of distance, the algorithm proceeds iteratively.
First, it uses Pearson’s chi-squared statistic to test whether there exist clustering pat-
terns. If all the data points are not uniformly distributed in the sample space, we can
use the modified chi-squared statistic to calculate the cluster centre and cluster radius.
This proposed HD vector algorithm detects one cluster at a time, and this cluster will
be deleted from the existing dataset before the next search. Note that the algorithm
is thus fully automatic, selecting both the clusters and the number of clusters.
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Figure 1: Dendrograms of clusters by mean Hamming distance. This plot is drawn using
hierarchical cluster analysis with complete linkage. The top plot uses Hamming distance
based only on the 62 highest entropy sites, whereas the bottom plot uses all 566 sites to
calculate the Hamming distance.
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The results of applying the HD vector algorithm to our data set of sequences is
discussed in the following section. This discussion uses the notion of mean Hamming
distance between two clusters, which we now define. Consider two clusters, C1 and
C2. Each cluster is made of up of a number of sequences, say, C1 = {A1, . . . , Aκ1} and
C2 = {B1, . . . , Bκ2}. The mean Hamming distance is then

dc(C1, C2) =
∑
i,j

ds(Ai, Bj)

κ1κ2
,

if C1 and C2 are two different clusters. If C1 = C2, then we use instead

dc(C1, C1) =
∑
i<j

ds(Ai, Aj)

κ1(κ1 − 1)/2
=

∑
i 6=j

ds(Ai, Aj)

κ1(κ1 − 1)

This modification is due to the fact that when comparing the same cluster, all distances
“along the diagonal” will always be equal to zero.

3 Results

3.1 Sites of Variability

As mentioned previously, to reduce the dimension of the system, we identified sites
of high variability across the HA sequence. 62 sites were found to have the largest

selected all

xx

differences

xx

Figure 2: From left to right: mean HD matrix of 62 selected most varied sites, mean HD
matrix of the whole sequence with 566 sites, absolute differences of the two matrices. In
these plots cluster 21 is excluded. Both matrices (left and centre) have been standardized
by dividing by their corresponding maximum values.
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variability. Of the 62 sites, 52 lie within the HA1 domain. The remaining 10 sites lie
within the HA2 domain.

3.2 Sequence Clusters

Using the method described in the previous section, the 1960 viral sequences were
partitioned into 23 clusters. Figure 1 shows two dendrograms of the resulting clusters.
The top dendrogram is based on the mean Hamming distance calculated only for the
sites of maximal entropy, whereas in the bottom dendrogram the Hamming distance is
calculated for all sites. Since the sites of highest entropy cover the mutation hot spots in
the amino acid sequence it is expected that the dendrograms should be similar. Indeed,
the dendrograms are largely consistent with regard to tree locations. Clusters 1 - 8 are
grouped into a clade, while the remaining clusters except 21 are grouped into another
clade. Although there exist subtle discrepancies in the specific clade location of some
clusters, the mean distances are fairly small.

For a further comparison of the clusters using the entire amino acid sequence and the
sites of maximal entropy we compare the Hamming distance matrices. Figure 2 (left,
centre) shows the corresponding heat maps of the mean Hamming distance matrices,
excluding cluster 21. Figure 2 (right) displays the absolute difference between these
two distance matrices. We investigate further by considering also the ratio of the
two Hamming distance matrices. The results are shown in Figure 3, and we can
see that once cluster 21 is excluded, there appear only spurious inconsistencies off

Figure 3: Ratio of distance matrices using the 62 most varied sites and all 566 sites in the
Hamming distance calculations.
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the main diagonal. Hence, the ratio is relatively constant (again, excluding cluster
21), which implies that the two distances (using the 62 sites and using all 566 sites)
are approximately equivalent. Therefore, the plots indicate that, once cluster 21 is
removed, the 62 most varied sites can stand for the whole sequence effectively with
regard to the distances between sequences. In what follows, we proceed with our
analysis of the results, keeping cluster 21.

3.3 Spatio-Temporal Evolution of the Clusters

Figure 4 shows the number of sequences in each cluster sorted by the first year of
isolation. The clusters that house the vaccine strains are also indicated. The vaccine
locations are consistent with the calendar year according to their strain name (and year
closeby) eg. “A/California/7/2004” and “A/Wisconsin/67/2005”, “A/Victoria/361/2011”
and “A/Texas/50/2012” are clustered together. This helps to verify the validity of the
cluster pattern.

We can observe from Figure 4 that large clusters are generally surrounded by clus-
ters of much smaller size. Thus, the dominant clusters over many years can be identi-
fied. We can also observe that more small clusters are generated in recent years. This
may be due to higher reporting rates, as rapid sequencing technologies have become
increasingly available.

Each cluster houses strains that exist over one or more influenza seasons. In Figure
5, we plot the number of sequences in each cluster as a function of their isolation year.
The size of each cluster is indicated by line thickness (with large clusters indicated
with thicker lines). It is observed that some clusters are significantly more long-lived
than others, but that no cluster spans more than seven years. It is also observed that
clusters first increase and then decrease in size over their lifespan. Dominant clusters
of viral sequences replace one another every 2-5 years, but once HA evolves away from
a given region of the sequence space, it does not later revisit that region. This agrees
with previous studies of influenza evolution[2, 9].

3.4 Evaluation of recommended vaccines for each season

In Table 3, we identify which clusters contain which vaccines, focusing on the clusters
that exist over the calendar years 2000-2012. The dominant cluster, vaccine strain,
and cluster that houses the vaccine strain for each year are provided for each vaccine.
Ideally, the strain used as the basis for a vaccine each year would correspond to the
dominant cluster. Considering the time lag that exists between the disease outbreak
and time of isolation, the cluster housing the vaccine strain should be as close to the
dominant cluster as possible.

A common observation over all of the years shown is that the relationship between
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Figure 4: Histogram of cluster size and vaccine location. The clusters have been re-ordered
by earliest year of isolation.
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Figure 5: The number of HA protein sequences within each cluster plotted versus calendar
year of isolation. Each cluster is indicated by a different colour, and the line width reflects the
cluster size. The dominant sequence clusters tend to replace each other every 2-5 years.(The
number of sequences each year is only for the unique sequences and does not reflect the
severity of infections.)
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the vaccine strain cluster and the cluster housing the dominant strain diverges (that
is, is further apart on the dendrogram tree). For example, from 2000-2004 the same
vaccine strain “A/Moscow/10/99” was used, however, the dominant cluster changes
each year in this time period, moving from a mean distance of 6.15 amino acids (aa)
from the vaccine sequence, to 8.37aa, and then 18.68aa in 2002-2004.

From Table 3 we can also see that cluster extinction often coincides with the exis-
tence or introduction of a well matched vaccine strain. In particular, the extinction of
clusters 6 and 9 coincides with the introduction of vaccines housed in the same cluster.
Something similar can be seen on clusters 1 and 11. Ultimate extinction of a cluster,
however, is a result of a combination of various factors, including vaccine strain and
competition between strains (that may have higher fitness). An exploration of strain
fitness is a course for future work.
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Table 3: Vaccines and Clusters by Year

Season Vaccine Cluster
Dominant Vaccine

cluster cluster

2000-2001 A/Moscow/10/99 1 3 4 5 1 2
2001-2002 A/Moscow/10/99 1 4 5 6 4 2
2002-2003 A/Moscow/10/99 4 5 6 7 8 6 2
2003-2004 A/Moscow/10/99 4 6 8 9 6 2
2004-2005 A/Fujian/411/2002 6 8 9 10 9 6
2005-2006 A/California/7/2004 1 9 10 9 9
2006-2007 A/Wisconsin/67/2005 9 10111213 11 9
2007-2008 A/Wisconsin/67/2005 9 11 13 11 9

2008-2009 A/Brisbane/10/2007 11 14151617 192021 11 11

2009-2010 A/Brisbane/10/2007 11 14 1617181920 18 11

2010-2011 A/Perth/16/2009 11 14 1617181920212223 18 14

2011-2012 A/Perth/16/2009 14 161718 212223 22 14
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4 Discussion

In this paper, we have presented a new method for clustering protein sequences, and
have applied the method to clustering of HA sequences of seasonal influenza A H3N2.
Including vaccine sequences in the analysis, allows us to present important relationships
between the vaccine and dominant influenza strain evolution.

In our approach, 62 sites of highest entropic variability were used in the clustering in
lieu of the full sequence, greatly reducing the computational complexity of the problem.
These 62 sites lie within the HA1 and HA2 regions of the HA genome. Our clustering
methodology separated the HA dataset into 23 clusters. Analysis of these clusters
found that HA generally clusters by year. Upon further analysis, we found that clusters
replace one another every 2-5 years, that the evolution of the dominant cluster diverges
from that of the cluster housing the vaccine strain, and that extinction of a dominant
cluster often coincide with the existence or introduction of a well-matched vaccine.

Our results are highly consistent with previous studies of HA evolution (i.e., see
[9, 10], and [26] for a review). Previously, Plotkin et al.[9] found that the persistence of
clusters can be used to predict the next season’s influenza sequences. In their analysis,
however, only the HA1 component of the HA protein was considered. Therefore, some
sites of high variability were neglected. Through choosing those most varied sites of
the whole sequence, all the potential evolutionary hot spots can be taken into account.
This can better help to find more diversified strains and evaluate the outbreak and
epidemics of each cluster.

In a recent study, Luksza and Lassig [10] employed a new method using an ensemble
of trees to infer the genealogy of influenza strains over time, trace the evolution of strain
clades, and predict vaccine strains from year to year. A careful comparison of their
results to that presented here is currently underway. It is important to note, however,
that the computational complexity of their method is higher than the method we
employ. Also, a key feature of our algorithm is that a statistical test is employed to
determine whether a suspected cluster structure is justified. Such a test is not included
in the methodology of Luksza and Lassig[10].

Our method can be applied to other components of the influenza virus genome. A
similar study on the NA glycoprotein is currently underway.

Our methodology can be improved in several ways. The discussion in Section 3.2
indicates that cluster 21 behaves differently from the remaining clusters. The within
and between mean Hamming distances based on the 62 high entropy sites of cluster
21 is similar to, or even smaller, than for other clusters. However, when the Hamming
distance is calculated for all sites, the situation is considerably different. Here, cluster
21 has the greatest within and between distance values. This difference may be the
result of numerous factors. It is possible that in the analysis, we have missed some
hot spots or some diversifying mutations when choosing the amino acid sites using the
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entropy approach. Alternatively, this could be the result of some inherent behaviour
of cluster 21, which has yet to be understood. Note that cluster 21 is made up of only
8 sequences. It is important to investigate this discrepancy further, and is part of our
ongoing research.

Secondly, we use the term “dominant” to denote clusters with the greatest number
of sequences in a given season. However, this definition only indicates that the cluster
contains the largest number of unique sequences. Therefore, the definition does not
account for (a) the actual number of sequences reported in a season, or (b) their
relationship with the frequency of the strain within the population. Although the first
issue is relatively straightforward to fix, the second is more problematic. The influenza
sequences available via IRD are based on voluntary contributions, and are therefore
not the result of random sampling. It is thus possible that systematic biases exist in
the data set, including yearly and regional variations[10]. Translating the observed
sequences on IRD into an appropriate representation of population level frequencies
is an important statistical problem which requires careful consideration in our future
work.

Lastly, we point out that our analysis is based on the Hamming distance (1). This
means that sequences close in Hamming distance (in amino acids) can be regarded as
close in lineage evolution history. If we infer the genealogy of all the strains by ensemble
of trees, those with small Hamming distance will be grouped into a clade, i.e. in the
same trunk of the phylogenic tree. This approach is “purely mathematical” in that it
does not include any potential information on the level of importance of specific amino
acid differences, or their locations. Incorporating such additional information, will
improve the quality of our analysis, and will therefore be included in future analysis.
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