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VISUALISING VARIABILITY:
CONFIDENCE REGIONS IN LEVEL SET ESTIMATION
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ABSTRACT: Level sets of a function appear in numerous scientific problems, for example, in the
detection of areas of high cancer rates. In practice, the true function is unknown and is therefore
estimated. Here, we focus on quantifying the risk of replacing the unknown (true) function with its
known estimator in the level set. We describe the variability, or accuracy, of the resulting estimator via
the statistical notion of a confidence region, which naturally provides a graphical representation of
variation easily visualized by the practitioner.
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1. INTRODUCTION
A level set of a real-valued function f is a set of
points where the values f (x) satisfy some con-
straint. For example, if f (x) is the intensity of
radiation at a point x on a surface, then the level
set could be the area of the surface where the ra-
diation intensity exceeds some threshold. Level
sets are used in a variety of problems, including
“hot spot” detection (e.g. to identify regions with
low vegetation growth or areas with high cancer
rates) and forecasting of extreme weather events.

In practice, the true function f is often un-
known and is estimated from observed data by
f̂n. The level set of f is then estimated by the
level set of f̂n. A key practical question is to char-
acterize and quantify the accuracy/risk of using
the estimate f̂n in the level set vs. the unknown
true function f . In statistics, this type of error is
usually quantified using variance or even more
appropriately, using standard deviation. How-
ever, characterizing, computing, and visualizing
the variability of the level set estimate is a particu-
larly difficult statistical problem. This is, in large
part, due to the fact that the space of (closed) sets
is nonlinear.

Mathematically, we denote the level set as

F(c1,c2) = {x ∈D : c1 ≤ f (x)≤ c2}, (1.1)

where D ⊂ Rd , f is a continuous function, f :
D 7→ R, and −∞ ≤ c1 ≤ c2 ≤ ∞. The true level
set F(c1,c2) is then estimated as

F̂FFn(c1,c2) = {x ∈D : c1 ≤ f̂n(x)≤ c2}. (1.2)

Sets of this form appear in various statistical
problems, such as estimation of contour clusters
[18, 19] or the estimation of density support [10].
In Section 5, we show how to apply the proposed
method to the estimation of the domain of co-
variates with specified response level(s). Such
a situation arises often in medical studies, such
as dose optimization and toxic dose estimation
[1, 23, 24], as well as in other fields. Additional
examples include mode estimation, estimation of
highest density and/or intensity regions [17], and
abnormal system behaviour detection. The exam-
ple given in [4] estimates the spherical density of
double stars, and uses level sets to find directions
with high densities of these double stars. [7] con-
sider highest density regions in the estimation of
the wintering location of the wood thrush song-
bird. Level sets are also closely related to random
closed sets, and this relationship was studied in
image inference applications in [8, 9].

Here, we propose to use confidence regions to
characterize and visualize the variability of the



Figure 1: A toy example showing the observed level set (left) and two different confidence regions
(centre and right, the confidence region is shown in grey and the estimated level set in black).

level-set estimators. In statistics, a 100(1−α)%
confidence region RRR of the true level set F(c1,c2)
is a random set that covers F(c1,c2) with a
probability of at least 1− α , that is, pr(RRR ⊃
F(c1,c2)) ≥ 1−α, under repeated experimen-
tation. In practice, the common choice is α = 5%
that yields a 95% confidence region. A clas-
sical example is the estimation of the popula-
tion mean µ . Under random samping, the es-
timate of µ is the sample mean, Xn. Estimate
Xn is the point estimate and it gives, statisti-
cally, the best guess of µ based on the observed
data. The corresponding 95% confidence interval
RRR = (Xn−1.96σ/

√
n,Xn +1.96σ/

√
n) reflects

the accuracy of the estimator Xn (σ is a standard
error of the sample), i.e. a narrower confidence
interval indicates a higher accuracy. The cover-
age of RRR is the probability of F(c1,c2) ⊂ RRR. In
the above example, the coverage of RRR is approx-
mately 95%.

Figure 1 shows a toy example of a level set
F̂FFn(0,0) (left), along with two different 95% con-
fidence regions (middle and right). In practice,
the true level set will not be known, and there-
fore we do not add it to this figure. The two
confidence regions greatly differ in size with the
larger one (middle) showing the estimator to be
less accurate than the smaller one (right). Clearly,
it is important for the practitioner to be able to
visualize such a difference in the reliability of the
estimate.

In set estimation, confidence regions can be
used to describe the accuracy of the set estima-
tor as well as its global and local variability. In
[8], we proposed a new approach for calculat-
ing confidence regions for the mean of a random
set. Developed independently, the approach was
closely related to that of [3] as both were based
on the idea of supremum inversion. This work
is motivated by applications to image inference
and effective dose estimation [3, 6, 8, 9, 12, 16].
Here, we provide a general framework for calcu-
lation of confidence regions for level sets. We
focus on the case where the rate of convergence
of the estimated function is

√
n, which is most of-

ten seen in parametric statistics. For some results
in the nonparametric setting, we refer to [13].

The outline of this paper is as follows. In
Section 1.1 we outline our notation and key
assumptions. In Section 2 we consider con-
sistency of the plug-in estimators and in Sec-
tion 3 we describe our general approach for
confidence region calculation under the assump-
tions of Section 1.1. Section 4 describes a sim-
ulation study, and Section 5 provides some ex-
amples. Code for the examples is available at
www.math.yorku.ca/∼hkj/.

1.1 Notation and Assumptions
Unless otherwise stated, we assume that D is
the working domain and write, for example,
F(c1,c2) = {x : c1 ≤ f (x)≤ c2} without stating
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that x ∈ D explicitly. We assume that D ⊂ Rd ,
and denote the Euclidean norm of x as |x|.

We write Br(x0) = {x : |x− x0| ≤ r} for the
closed ball of radius r centred at x0. For a set
A, we write Ao,A,Ac and ∂A to denote its inte-
rior, closure, complement and boundary. Unless
noted otherwise, set operations are calculated
relative to the domain D . That is, Ac = D \A,
and so forth. Furthermore, for a set A, we de-
fine Aδ = {x : Bδ (x)∩A 6= /0}= ∪x∈ABδ (x). De-
terministic sets are denoted using capital letters
A,B . . ., while bold upper-case lettering, AAA,BBB, . . .,
is used for random sets. We do this to emphasize
the difference between the random and observed
set. Recall also that the Hausdorff distance be-
tween two sets, A and B, is defined as

ρ(A,B) = inf
{

δ > 0 : A⊂ Bδ ,B⊂ Aδ

}
.

The notation C(D) is used to denote the
space of continuous functions C(D) = { f : D 7→
R, f continuous} endowed with the uniform met-
ric. We write Xn⇒ X to say that Xn converges
weakly to X . When handling weak convergence
of stochastic processes or random fields, we as-
sume that they take values in C(D).

Suppose now that f̂n is a random, continuous
function such that

(A1) sup
x∈K
| f̂n(x)− f (x)| → 0

almost surely (almost everywhere), as n→∞, for
all compact sets K ⊂D . To construct confidence
regions, the sets (1.1) are restricted to a compact
window W ⊆ D, and we require the assumption
of weak convergence

(A2)
√

n{ f̂n(·)− f (·)}⇒ Z(·),

where Z(·) is a continuous random field on W . In
practice, assumption (A2) can be checked using
the techniques described in [2, 25] for D ⊂ R or
[11] for D ⊂ Rd .

2. CONSISTENCY
An estimator is said to be consistent if it ap-
proaches the quantity it is estimating as the sam-
ple size increases. Consistency is a core concept

in statistics, because if an estimator is biased, this
bias becomes negligible for a sufficiently large
sample size. Below we provide conditions re-
quired for consistency of F̂FFn(c1,c2). The proofs
appear in the Appendix, and follow from [16]
and/or [4].

Let F be the family of closed sets of Rd and
let K denote the family of all compact subsets of
Rd . For a probability triple (Ω,A ,P), a random
closed set is the mapping AAA : Ω 7→F such that
for every compact set K ∈K

{ω : AAA(ω)∩K 6= /0} ∈A ,

(cf. [15]). Note that

{F̂FFn(c1,c2)∩K 6= /0}

=

{
inf
x∈K

∣∣∣∣ f̂n(x)−
c1 + c2

2

∣∣∣∣≤ c2− c1

2

}
,

Therefore, since the functions f̂n are continuous
almost surely, the estimators (1.2) satisfy the mea-
surability requirement and are well-defined.

A random closed set AAAn converges strongly
to a deterministic set A if for any compact set
K, ρ(AAAn∩K,A∩K)→ 0 almost surely (almost
everywhere) [16]. The key conditions for the
consistency of the estimators (1.2) are

{x : f (x)≤ c} = {x : f (x)< c} (2.1)
{x : c≤ f (x)} = {x : c < f (x)}. (2.2)

Theorem 2.1. Under assumption (A1), the esti-
mator F̂FFn(c1,c2) converges strongly to F(c1,c2)
if the function f satisfies condition (2.1) at c = c2
and condition (2.2) at c= c1. Moreover, (2.1) and
(2.2) are necessary in the following sense:
1. Suppose that x0 is a point such that there
exists a neighbourhood Bδ (x0) and a subse-
quence nk such that f̂nk(x) > f (x) for all x ∈
Bδ (x0). If F̂FFn(c1,c2) is consistent, then (2.1)
must hold at x0 for c = c2 in the sense that
x0 /∈ {x : f (x)≤ c2}\{x : f (x)< c2}.

2. Suppose that x0 is a point such that there
exists a neighbourhood Bδ (x0) and a subse-
quence nk such that f̂nk(x) < f (x) for all x ∈
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Bδ (x0). If F̂FFn(c1,c2) is consistent, then (2.2)
must hold at x0 for c = c1 in the sense that
x0 /∈ {x : c1 ≤ f (x)}\{x : c1 < f (x)}.

Example 1: Let D = [−2,2]2 ⊂ R2 with
f (x) = |x| and F(−∞,1) = {x : f (x) ≤ 1}, the
disc with radius one centred at the origin. Sup-
pose U1, . . . ,Un are independent and identically
distributed random variables from the uniform
distribution on [−1,1]2, and let Ūn denote their bi-
variate sample mean. Then f̂n(x) = |x−Ūn| con-
verges uniformly to f (x) on D , and f (x) satisfies
(2.1) and (2.2) at p = 1. Therefore, F̂FFn(−∞,1)
and F̂FFn(1,1) are consistent for F(−∞,1) and
F(1,1) = {x : |x| = 1}. In this case, the
Hausdorff distance ρ(F̂FFn(−∞,1),F(−∞,1)) =
ρ(F̂FFn(1,1),F(1,1)) = |Ūn| converges to zero al-
most surely, by the strong law of large numbers.

3. CONFIDENCE REGIONS
Now, assume that the estimating functions f̂n sat-
isfy assumption (A2) for some compact window
W ⊂ D . The confidence regions for the sets
(1.1) restricted to W can be obtained as follows.
Let q1 and q2 be the quantiles of the process
supx∈W Z(x) such that

pr
(

sup
x∈W

Z(x)≤ q1

)
= 1−α,

pr
(

sup
x∈W
|Z(x)| ≤ q2

)
= 1−α.

Then the sets{
x ∈W : f̂n(x)≤ c+q1/

√
n
}
,{

x ∈W : c1− q2√
n ≤ f̂n(x)≤ c2 +

q2√
n

}
,

(3.1)

form 100(1−α)% confidence regions for W ∩
F(−∞,c) and W ∩F(c1,c2), respectively (where
−∞ < c1 ≤ c2 < ∞ and c ∈R). Note that the ran-
dom variables supx∈W |Z(x)| and supx∈W Z(x)
are well-defined because W is compact and Z has
continuous sample paths. This also implies that
we may use maxx∈W |Z(x)| and maxx∈W Z(x) to
calculate the quantiles, which is computationally

easier. In what follows, we assume that W = D ,
where D is compact, unless otherwise stated.

Recall that the coverage of a confidence region
refers to the probability with which it covers the
quantity of interest. For a 100(1−α)% confi-
dence region, it is typically considered ideal if
the coverage is as close to 100(1−α)% without
going over. Such a confidence region is preferred
because it is conservative, in the sense that it will
never under quantify the variability of the esti-
mator. Let us first show that our approach yields
such a confidence region.{

F(−∞,c)⊂ { f̂n(x)≤ c+q1/
√

n}
}c

=
{

f̂n(x)> c+q1/
√

n ∃ x ∈ F(−∞,c)
}
.

Now, let Zn(x) =
√

n( f̂n(x)− f (x)). Then

pr
(

f̂n(x)> c+q1/
√

n ∃x ∈ F(−∞,c)
)

= pr
(
Zn(x)>

√
n(c− f (x))+q1

∃x ∈ F(−∞,c))
≤ pr(Zn(x)> q1 ∃x ∈ F(−∞,c))
≤ pr(Zn(x)> q1 ∃x) , (3.2)

and taking the limit in n, the latter quantity is less
than or equal to α by definition of q1. It therefore
follows that

pr(F(−∞,c)⊂ { f̂n(x)≤ c+q1/
√

n})≥ 1−α,

as required, asymptotically. A similar approach
works for the case F(c1,c2).

The above calculation is illuminating for sev-
eral reasons:
– Notice that the consistency conditions play

no role in the design of the confidence region.
Indeed, the confidence region functions as in-
tended even if consistency is violated (see e.g.
Example 3).

– The smoothness and variability of the field Z
determines the “size” of the confidence set,
which may not be uniform over W . In fact,
the larger the window W is chosen, the wider
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the confidence set is. Furthermore, going from
the penultimate to the ultimate line in (3.2) we
note that the bounding term supZ(x) could be
replaced with many other upper bounds, in-
cluding supx∈F(−∞,c)Z(x), and asymptotically
with supx∈F(c,c)Z(x).

– The calculations in (3.2) give also some ideas
on the power of the methodology. In this con-
text, statistical power would indicate an abil-
ity to also recognize the regions which should
not be in F(c1,c2) with high probability. For
x∈F(−∞,c)c, the quantity

√
n(c− f (x)) con-

verges to −∞, and therefore these locations
should be easily picked up by the confidence
region for large enough sample sizes.

– The confidence regions are conservative, in
that the upper bounds in (3.2) mean that over-
coverage is possible, even asymptotically. We
explore the extent of this via simulations in
Section 4.

Finally, we note that our methods are straight-
forward to implement, and, if exact limiting distri-
butions cannot be found, the confidence sets may
be estimated using bootstrap methods, either para-
metric or nonparametric [5, for additional details
on bootstrap methodologies]. In what follows,
we used the parametric bootstrap in Example 5
and the nonparametric bootstrap in Example 6.

Example 2: To build 95% confidence re-
gions for Example 1: F(1,1) = {x : |x| = 1}
with W = D = [−2,2]2, we calculate Zn(x) =√

n(|x−Ūn|− |x|) , where Ūn is the average of n
independent Uniform[−1,1]2 random variables.
Clearly, Zn(x) has continuous sample paths.
Also, |Zn(x)| ≤

√
n|Ūn| for all x and, since this is

realized at x= 0, we obtain that supx∈D |Zn(x)|=√
n|Ūn|. The limiting distribution is therefore√
3−1(Z2

1 +Z2
2) where Z1,Z2 are independent

standard normal variables, and it therefore fol-
lows that q2 = 1.41.

4. SIMULATION STUDY
In (3.2), we have shown that the confidence
regions (3.1) cover the true level set at least

Table 1: Empirical coverage probabilities for
95% confidence region. The standard error due

to Monte Carlo sampling is 0.0022.

n = 25 n = 100 n = 1000

(A) 95.26 94.83 95.12
(B) 94.79 95.34 95.47
(C) 97.81 98.16 98.45

100(1−α)% of the time, for sufficiently large n.
Here, we use Monte Carlo simulations to cal-
culate the empirical coverage probabilities for
various examples and sample sizes. The goal is
to understand the actual behaviour of the meth-
ods, as well as the amount of over-coverage one
could expect to see in practice. The cases we
consider are (A) Example 2 of Section 3, and (B)
Example 3 and (C) Example 4 described below.
For each of the three examples, we calculate the
100(1−α)% confidence region with W =D and
estimate the coverage. We consider the following
sets:

W = D
(A) F(1,1) [−2,2]2

(B) F(−∞,1) [−1,2]
(C) F(0,1) [−2,2]2

The simulations were done in MATLAB, on a
discretized domain D . Because the discretization
introduces some error into the calculations [22],
we selected a large lattice and calibrated it to give
accurate results as follows. Suppose that D ⊂R2

and f (x) = |x|−0.5 with f̂n(x) = |x|−Ūn, where
Ūn is the average of n independent samples from
a uniform distribution on [0,1]. The confidence
regions for F(0,0) are exact because of the spe-
cial separable form of the function f̂n (modulo the
sample size approximations). For n = 1000 and
lattices with m = 200,400,600,800,1000, the
empirical coverage probabilities for the 95% con-
fidence region were 95.10, 95.02, 95.30, 95.30,
and 94.96s, respectively; the standard error due
to Monte Carlo sampling was 0.003. From here,

5



Table 2: Empirical coverage probabilities for
90% confidence region; the standard error due to

Monte Carlo sampling is 0.0030.

n = 25 n = 100 n = 1000

(A) 89.87 89.70 90.17
(B) 88.49 90.07 90.17
(C) 96.10 96.09 96.71

we selected m = 600 for simulations.

Example 3: Let D = [−1,2] ⊂ R and h(x) =
|x − 0.5| − 0.5. Let f̂n(x) = p̂n|h(x)| + (1 −
p̂n)h(x), where np̂n is a binomial random vari-
able with parameters n and p = 1/2. Set the
true function f (x)=E[ f̂n(x)] =max(h(x),0) and
F(−∞,0) = {x : f (x) ≤ 0} = [0,1]. Notice that
f does not satisfy condition (2.1) at c = 0. In-
deed, if p̂n > 0.5 then F̂FFn(−∞,0) = {0,1} and
otherwise F̂FFn(−∞,0) = [0,1]. Clearly, consis-
tency does not hold, however, the confidence re-
gions will still behave as expected.

Example 4: Suppose that D = [−2,2]2 and
f (x) = β T x̃, where β T = (0.5,1,2,−3,1) and
x̃ = (1,x1,x2,x1x2,x2

1)
T . This is estimated by the

regression function f̂n(x) = β̂ T
n x̃, where β̂n is nor-

mally distributed with mean β and variance Σ/n
with Σii = 1 and Σi j = 0.2 for i 6= j. The quan-
tiles of the fluctuation field supx∈D |Z(x)| were
found empirically. The set being estimated is
F(0,1).We show examples of the confidence re-
gions for n = 25,100 and 1000 in Figure 2. We
refer to Example 5 for a more detailed regression
example.

Tables 1 and 2 show the results for B = 10,000
Monte Carlo simulations. Although the confi-
dence regions are conservative, (A) and (B) both
show almost exact coverage. In (C), the variabil-
ity of the fluctuation field is reflected in the size
of the confidence sets. The effect is compounded
because the function f is relatively flat in the
neighbourhood of F(0,1).

5. EXAMPLES AND APPLICATIONS
5.1 Covariate Domain Estimation
Least squares regression is a well-known sta-
tistical tool ubiquitous across the sciences. In
regression analysis, the expected response is
modeled as a function of covariates, i.e. we
model E[Y |X = x] where Y is the response vari-
able and x is the vector of covariates. Given
f (x) = E[Y |X = x], the various sets (1.1) de-
scribe the domain of covariates for which the
mean response lies within a specified target
range. Although we focus on the linear regres-
sion model, the method can be easily extended
to most generalized linear models. We thus de-
fine f (x) = β T x̃, with x̃ = x̃(x) denoting some
continuous function of the covariates. We as-
sume that the covariates are continuous and lie
in D ⊂ Rd, with p+1≥ d denoting the number
of regression variables. For example, if f (x) =
β0+β1x1+β2x2+β3x1x2, then d = 2, p = 3 and
x̃T = x̃T (x1,x2) = (1,x1,x2,x1x2).

Consider the estimating function

f̂n(x) = β̂ T
n x̃,

where n is the number of observations. Since
x̃ is continuous, the image of D under x̃ is
compact. It follows that f̂n(x) converges uni-
formly to f (x) as long as β̂n are consistent es-
timators, and therefore, f̂n satisfies assumption
(A1). The conditions (2.1) and (2.2) need to be
checked on a case by case basis. For example,
for f (x) = β0 +β1x1 +β2x2 +β3x1x2, both con-
ditions are satisfied for any value of c, as long as
at least one of β1,β2,β3 is non-negative.

Next, let Zn(x) =
√

n( f̂n(x)− f (x)). If β̂n is
asymptotically normal, we have that

√
n(β̂n−

β ) ⇒ Z, where Z is multivariate normal with
mean zero and variance Σ. If unknown, Σ is esti-
mated using standard regression methods. Since
x̃ is continuous, it follows that Zn(x) converges
weakly in C(D) to a continuous, mean zero Gaus-
sian field, Z(x) = ZT x̃, with covariance structure
given by cov(Z(x),Z(x′)) = x̃T Σx̃. Therefore, f̂n
satisfies assumption (A2), and confidence sets
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Figure 2: For each of n = 25,100,1000 (from left to right), the boundary of the true set F(0,1) (black)
and the boundary estimate F̂FFn(0,1) (dark grey) are shown along with the 90% confidence region (light

grey). The boundary of the modified 90% confidence region is also shown (dashed).

may be formed as described above.
In [3], this problem was considered for a lo-

gistic regression in the context of effective dose
estimation, and this approach was later studied
numerically in [12]. The idea we present here
and the approach of [3] are similar in that they
both obtain upper bounds on the supremum of
the fluctuation process. The upper bounds of [3]
are derived via a similar idea to that used for
Scheffé’s bounds for simultaneous confidence in-
tervals [21]. We refer to [3] and [12] for more de-
tails. The general methodology described in Sec-
tion 3 does not specify the best way in which to
obtain these quantiles. The approach of [3] is one
which does work for general settings of paramet-
ric regression problems, but these bounds are very
conservative, and therefore result in much over
coverage for the methodology [see 12]. In the
example below, we show a more direct approach
of estimating the quantiles of supx∈D Z(x).

Example 5: We illustrate the method on the
data set trees available with R [20]. Here,
girth (in inches), height (in feet) and vol-
ume (in cubic feet) of timber were recorded
for 31 felled black cherry trees. Set x1 =
girth and x2 = height. Fitting the model

E[logY |x] = β0 + β1 logx1 + β2 logx2, we ob-
tain estimates β̂0 = −6.63 (p-value = 5.1e−

09), β̂1 = 1.98 (p-value < 2e− 16) and β̂2 =
1.12 (p-value = 7.8e− 06). The estimates are
not far from the formula volume = height×
girth2/4π.

Set D = [5,25]× [50,100], and suppose that
we are interested in the domain of covariates for
which the log-volume is at least log30 (≈ 3.4),
that is,

F(− log30,∞)

= {x : E[logY |x]≥ log30}
= {x :−β0−β1 logx1−β2 logx2 ≤− log30}.

Figure 3 shows the estimator F̂FFn(− log30,∞) =

{x : f̂n(x) ≤ − log30}, where f̂n(x) = β̂ T x̃ and
x̃T = (−1,− logx1,− logx2). Note that x̃ is con-
tinuous on D .

The true function f (x) = −β0 − β1 logx1 −
β2 logx2 is strictly decreasing in both x1 and x2,
and therefore, it satisfies condition (2.1) at c =
− log30, or for any other choice of c. Condition
(2.2) is also satisfied, although we do not require
it here. It follows that the set F̂FFn(− log30,∞) is
consistent for F(− log30,∞).

The 95% confidence set for F(− log30,∞) is
{x : f̂n(x)≤− log30+q1/

√
31}, where q1 is the

value such that pr(supx∈D Z(x)≤ q1) = 0.95. In
this case, the fluctuation process is Z(x) = ZT x̃,
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Figure 3: The estimated set F̂n(− log30,∞) (the
boundary of this set is shown in black) with the
95 % confidence region (light gray). The data

points are also shown as circles, with the filled in
circles showing those data with volume ≥ 30.

where ZT = (Z0,Z1,Z2) is a mean-zero multivari-
ate Gaussian. Under the normal linear model, a
consistent estimator of the covariance matrix of
Z is Σ̂ where

Σ̂ = n σ̂
2(X ′X)−1

= 31×

 0.6397 0.0208 −0.1601
0.0208 0.0056 −0.0081
−0.1601 −0.0081 0.0418

 ,
where X is the design matrix of the regression.
The supremum of Z must occur on one of the
corners of D ,

sup
z∈D

Z(x) = max
i=1,2, j=1,2

{
Z(ai,b j)

}
,

for a1 = log5,a2 = log25,b1 = log50 and b2 =
log100. We estimate the quantile via Monte

Carlo sampling from a multivariate Gaussian with
variance Σ̂, to obtain{
x :−β0−β1 logx1−β2 logx2 ≤− log30+ 1.28√

31

}
as the approximate 95% confidence region. The
resulting set is shown in Figure 3.

5.2 Estimating the Boundary of a Density Re-
gion

Here, our goal is to identify the set F(c,c) = {x :
f (x)≥ c} for the unknown density f . This prob-
lem is closely related to clustering, in the sense
that for certain cutoff values c, the set F(c,c) can
be used to identify both the number of clusters
and their centres.

Example 6: Consider the problem of estimat-
ing the level set of density function. Suppose
that f is a mixture density given by f = 0.5g1 +
0.5g2, where g1 and g2 are both bivariate Gaus-
sian densities. Figure 4 shows two examples of
such density functions with different degrees of
separation between the mixture components gi.
Using a random sample of size n = 1000, we esti-
mate the level set F(0.055,0.055) = {x : f (x) =
0.055} for both examples. Wider confidence re-
gions in Figure 5 (left) indicate that the lack of
separation between the mixture components leads
to higher variability (equivalently, less accuracy)
of the estimator.

The drastic difference in Figure 5 (top vs. bot-
tom) implies that confidence regions can be ef-
fectively used to characterize and visualize the
variability and accuracy of level set estimators.

This idea closely relates to estimation of high
intensity regions, where one is interested in find-
ing “hot spots”, or regions where the estimated
intensity crosses some threshold. Important ex-
amples include high/low vegetation growth or
regions exhibiting high cancer rates [17] or prob-
abilistic forecasting of extreme weather events in
meteorology [14].

6. DISCUSSION
We present a method for graphically presenting
the risk associated with replacing the unknown
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Figure 4: Two Gaussian mixture densities : f
(top) and f̃ (bottom), as defined in the text.

function with its estimator when computing a
level set. The method is appropriately conserva-
tive, and we have studied the amount of over-
coverage in several examples through simula-
tions. We also give some specific examples based
on simulated and real data.
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Figure 5: The boundary of true level set
F(0.055,0.055) (solid line) and the boundary of
the estimated level set F̂FFn(0.055,0.055) (dashed

line) for densities f (top) and f̃ (bottom) in
Figure 4. The level set estimates are based on a
random sample of size n = 1000. Visually, both

the level sets and their estimates appear quite
similar. However, the 95% confidence regions

(gray) reveal great variability in the accuracy of
the two estimates.

APPENDIX
Technical details
Lemma 6.1. Suppose that f is continuous. Then

{x : c1 ≤ f (x)}ε ∩{x : f (x)≤ c2}ε

= {x : c1 ≤ f (x)≤ c2}ε .
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Proof. Suppose y is in the set {x : c1 ≤ f (x)}ε ∩
{x : f (x)≤ c2}ε but not in the set {x : c1≤ f (x)≤
c2}. Then one of two possibilities exists: Either
f (y) < c1 or f (y) > c2. The argument for both
cases is the same, so we present only the first
instance.

Assume then that y is such that f (y) < c1.
By definition of y, there exists an x1 such that
c1 ≤ f (x1) and y ∈ Bε(x1), or an x2 such that
f (x2) ≤ c2 and y ∈ Bε(x2). In the first setting,
since f is continuous, there also exists a z such
that c1 ≤ f (z)≤ c2 and d(y,z)≤ ε . For example,
one such z must fall on the line between y and x1,
which would clearly satisfy |y− z| ≤ ε . A similar
argument shows that if y ∈ Bε(x2), then there ex-
ists a z such that c1 ≤ f (z) ≤ c2 and |y− z| ≤ ε .
It follows that y ∈ B(z,ε). This proves that

{x : c1 ≤ f (x)}ε ∩{x : f (x)≤ c2}ε

⊂ {x : c1 ≤ f (x)≤ c2}ε .

Containment in the other direction is immediate,
completing the proof.

Proof of Theorem 2.1. The proof here is similar
to that of [16]. Without loss of generality, we
may assume that D is compact. If f : D 7→R is a
continuous function satisfying the conditions of
the theorem, then

ϕ̃(±ε) = ρ({x : f (x)≤ c2},{x : f (x)≤ c2± ε})
ϕ(±ε) = ρ({x : c1 ≤ f (x)},{x : c1± ε ≤ f (x)})

are all continuous for ε near zero, and moreover,
they both converge to zero as ε → 0. Now, by
(A1), we know that f̂n converges uniformly to f
with probability one. Let

ηn = sup
x∈D
| f (x)− f̂n(x)|,

and also define

εn = max{ϕ(ηn),ϕ(−ηn), ϕ̃(ηn), ϕ̃(−ηn)}

which converges to zero as n→ ∞ almost surely.
We will next show that ρ({x : c1 ≤ f̂n(x) ≤

c2},{x : c1 ≤ f (x)≤ c2})≤ εn. To this end

{x : c1 ≤ f (x)≤ c2}
⊂ {x : f (x)≤ c2−ηn}ϕ̃(−ηn)

⊂ {x : f̂n(x)≤ c2}ϕ̃(−ηn) ⊂ {x : f̂n(x)≤ c2}εn.

Repeating in the other direction, we obtain

{x : c1 ≤ f (x)≤ c2}
⊂ {x : c1 +ηn ≤ f (x)}ϕ(ηn)

⊂ {x : c1 ≤ f̂n(x)}ϕ(ηn) ⊂ {x : c1 ≤ f̂n(x)}εn.

and hence, by Lemma 6.1,

{x : c1 ≤ f (x)≤ c2}
⊂ {x : c1 ≤ f̂n(x)≤ c2}εn. (A-1)

For the other direction,

{x : c1 ≤ f̂n(x)≤ c2} ⊂ {x : f (x)≤ c2 +ηn}
⊂ {x : f (x)≤ c2}εn.

A similar argument shows that {x : c1 ≤ f̂n ≤
c2} ⊂ {x : c1 ≤ f (x)}εn, from which it follows

{x : c1 ≤ f̂n(x)≤ c2} ⊂ {x : c1 ≤ f (x)≤ c2}εn

by Lemma 6.1. Together with (A-1) this proves
the result.

To address necessity, suppose that there ex-
ists a neighbourhood of x0, Bδ (x0), and a sub-
sequence nk such that f̂nk(x) < f (x) for all x ∈
Bδ (x0). Assume also that x0 ∈ {x : c1 ≤ f (x)}\
{x : c1 < f (x)}. In particular, this implies that
(2.2) is not satisfied, and hence there exists an
ε > 0 such that ρ(x0,{x : c1 < f (x)≤ c2}) >
ε . It follows that ρ(F̂nk(c1,c2),F(c1,c2)) >
min(ε,δ )> 0, proving the result. A similar argu-
ment proves the other claim.
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