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CONVERGENCE OF LINEAR FUNCTIONALS OF THE
GRENANDER ESTIMATOR UNDER MISSPECIFICATION

By HANNA JANKOWSKI®
York University

Under the assumption that the true density is decreasing, it is
well known that the Grenander estimator converges at rate n/® if
the true density is curved (Prakasa Rao, 1969) and at rate n/2 if the
density is flat (Groeneboom and Pyke, 1983; Carolan and Dykstra,
1999). In the case that the true density is misspecified, the results
of Patilea (2001) tell us that the global convergence rate is of order
n'/® in Hellinger distance. Here, we show that the local convergence
rate is n'/2 at a point where the density is misspecified. This is not
in contradiction with the results of Patilea (2001): the global conver-
gence rate simply comes from locally curved well-specified regions.
Furthermore, we study global convergence under misspecification by
considering linear functionals. The rate of convergence is n'/? and we
show that the limit is made up of two independent terms: a mean-
zero Gaussian term and a second term (with non-zero mean) which
is present only if the density has well-specified locally flat regions.

1. Introduction. Shape-constrained nonparametric maximum likeli-
hood estimators provide an intriguing alternative to kernel-based density
estimators. For example, one can compare the standard histogram with the
Grenander estimator for a decreasing density. Rules exist to pick the band-
width (or bin width) for the histogram to attain optimal convergence rates,
cf. Wasserman (2006). On the other hand, the Grenander estimator gives a
piecewise constant density, or histogram, but the bin widths are now cho-
sen completely automatically by the estimator. Furthermore, the bin widths
selected by the Grenander estimator are naturally locally adaptive (Birgé,
1987; Cator, 2011). Similar comparisons can also be made between the log-
concave nonparametric MLE and the kernel density estimator.

The Grenander estimator was first introduced in Grenander (1956) and
has been considered extensively in the literature since then. A recent review
of the history of the problem appears in Durot et al. (2012). The latter
paper establishes that the Grenander estimator converges to a true strictly
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decreasing density at a rate of (n/logn)/? in the Lo, norm. Other rates have
also been derived over the years, most notably, convergence at a point at a
rate of n'/3 if the true density is locally strictly decreasing (Prakasa Rao,
1969; Groeneboom, 1985) and at a rate of n'/? if the true density is locally
flat (Groeneboom, 1983; Carolan and Dykstra, 1999).

As noted in Cule et al. (2010); Diimbgen et al. (2011) the “success story”
of maximum likelihood estimators is their robustness. Namely, let F denote
the space of decreasing densities on Ry. Next, let fo denote the true density
and fp denote the density closest to fy in the Kullback-Leibler sense. That
is,

fo(x)
g (@) dx.

We will call the density ﬁ) the KL projection density of fo, or the KL
projection for short. Note that if fo € F then fo = fo. Patilea (2001) showed
that the density fo exists, and that the Grenander estimator converges to
fo when the observed samples come from the true density fo, regardless if
fo € F. Similar results were proved for the log-concave maximum likelihood
estimator in Cule and Samworth (2010); Cule et al. (2010); Diimbgen et al.
(2011); Balabdaoui et al. (2013).

In order to understand the local behaviour of the Grenander estimator
when fy ¢ F, we first need to define regions where fy is considered to be
miss— and well-specified. Let ﬁo denote the cumulative distribution function
of fp defined in (1.1). The regions where Fy # Fy are then the regions where
fo is misspecified, and fj is considered to be well-specified otherwise. Note
that, if fy is misspecified in a region, it may still be decreasing on some
portion of this region, see e.g. Figure 1.

Let f,, denote the Grenander estimator of a decreasing density. We show
here that at a point where the density is misspecified the rate of convergence
of fn to fo is n'/2, and we also identify the limiting distribution. This is not
in contradiction w1th the results of Patilea (2001): the slower n!/3 global
convergence rate simply comes from locally curved well-specified regions. To
be more specific, if the density fo is misspecified at a point, then FO must be
linear (and fois flat), and in regions where Jo is flat the rate of convergence
is n'/2. In fact, the n'/2 rate holds at all flat regions of fo, irrespective of
whether these are miss— or well-specified. The complete result is given in
Section 2, where some properties of fy are also discussed.

Next, we consider convergence of linear functionals. Let

(1.1) fo= argmin ¢ » /000 fo(x)1

-~

(12) Folg) = /0 4@ fo@)dz and fin(g) = /0 " 9@ foe)de.
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In Section 3 we show that n'/2(fi,,(¢) —fio(g)) = Op(1), and we again identify
the limiting distribution. Notably, the limit is made up of two independent
terms: a mean-zero Gaussian term and a second term with non-zero mean.
Furthermore, the second term is present only if the density has well-specified
locally flat regions. Our results apply to a wide range of KL projections with
both strictly curved and flat regions. The work in the strictly curved case
follows from the rates of convergence of ﬁn(y) = fg’ fn(y)dy to the empirical
distribution function established in Kiefer and Wolfowitz (1976). However,
as mentioned above, this is only for the well-specified regions of fy. A related
work here is that of Kulikov and Lopuhaé (2008), who consider functionals
in the strictly curved case but at the distribution function level.

In Section 4 we go beyond the linear setting, and consider convergence
of the entropy functional in the misspecified case. The limit in this case is
Gaussian, irrespective of the local properties of fy. Most proofs appear in
Section 6 and some technical details are left to the Supplementary Material.
Throughout, our results are illustrated by reproducible simulations. Code
for these is available online at www.math.yorku.ca/~hkj/.

To our best knowledge, previous work on rates of convergence under mis-
specification in the shape-constrained context is limited to the rates es-
tablished in van de Geer (2000) and Patilea (2001), as well as the more
recent results of Balabdaoui et al. (2013). In Balabdaoui et al. (2013), the
pointwise asymptotic distribution under misspecification was derived for the
log-concave probability mass function.

The implications of ‘the new results obtained here are as follows. First, we
now understand that fy will be made up of local well-specified and misspec-
ified regions, and that the rate of convergence in the misspecified regions is
always n'/2. We conjecture that this type of behaviour will be seen in other
situations, such as the log-concave setting for d = 1. That is, the rate of
convergence in misspecified regions will be n/2 whereas in well-specified re-
gions the rate of convergence will depend on whether locally the density lies
on the boundary or the interior of the underlying space. In the log-concave
d = 1 case, this “interior” rate is known to be n*/® (Balabdaoui et al., 2009).
The interesting case of d > 1 is more mysterious though, as the relationship
between the slower boundary points and faster interior points is harder to
identify.

Secondly, we show that linear functionals (as well as the non-linear en-
tropy functional) converge at rate n'/2, and we also conjecture that this
behaviour will continue to hold for other shape constraints. Let po(g) =
Io" 9(z) fo(x)dz. Our results show that

(1.3) vV (fin(g) — 1o(9)) = Op(1) +vn (fio(9) — 10(9)) -
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Therefore, global rates of divergence are n'/? for linear functionals in the
misspecified case. A similar statement also holds for the entropy functional,
and here the random O,(1) term is always Gaussian. Such results are well-
understood in parametric settings, and are key in power calculations. The
exact conditions necessary for (1.3) to hold are given in Section 3 for po(g)
and in Section 4 for the entropy. Our work can also be easily extended to
locally misspecified settings such as those studied in Le Cam (1960).
Lastly, the fact that the limiting distribution of the linear functional 7i,(g)
depends on properties of f, whereas the limiting distribution of the entropy
functional is always Gaussian, makes the entropy functional potentially more
appealing in terms of testing procedures. Hypothesis testing based on func-
tionals was considered, for example, in Cule et al. (2010) and Chen and Sam-
worth (2013). The latter reference develops the “trace test” which depends
on a nearly linear functional, the variance. Both, however, are developed in
the context of log-concavity, and it would be of great interest to extend the
results presented here to that setting, particularly for higher dimensions.

2. The Kullback-Leibler projection and pointwise convergence
under misspecification. Properties of the KL projection onto the space
of log-concave densities were studied in Diimbgen et al. (2011). When pro-
jecting onto the space of decreasing densities, the behaviour is a little easier
to characterize.

THEOREM 2.1.  (Patilea, 1997, 2001) Let fo be a density with support
on [0,00) with Fo(z) = [ folu)du. Let Fy denote the least concave ma-

jorant of Fy. Then the left derivative of ﬁo, fo, satisfies the inequality
[ log %dFo > 0, for all decreasing densities f.

REMARK 2.2. The density ﬁ) satisfying [ log %ng > 0 forall f € Fis
called the “pseudo-true” density by Patilea (2001). If we additionally assume
that Supfe]_—flogdeo and [log fo dFy are both finite, then this fo is also
the unique minimizer of the Kullback-Leibler divergence

fo= argmin ez [ log f—J?dFO.

See Patilea (2001, page 95) for more details. In what follows we continue to
refer to fo as defined in Theorem 2.1, as the KL projection, even if it comes
from the slightly more general definition of Patilea (2001).

Thus, in our setting, we have a complete graphical representation of the
distribution function Fy of the KL projection. This representation makes it
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FiG 1. Two examples of fo and ﬁ) = gren(Fy). The two left panels show the cdf and density
for example (2.1) while the two right panels show the cdf and density for example (2.2).
Fy (resp. fo) is shown in black, and Fy (resp. ﬁ]) is shown in gray, but only if different
from the truth (namely Fo and fo respectively).

possible to calculate ﬁ) in many cases. It also allows us to easily visualize
the various Fj which yield the same ]?0. Moreover, the representation is key
in understanding the behaviour of the estimator, both on the finite sample
and asymptotic levels. Therefore, for a function g we define the operator
gren(g) to denote the (left) derivative of the least concave majorant of g.
When the least concave majorant is restricted to a set [a,b], we will write
gren, 4 (9)-

Let Sp denote the support of fo. We write So = M U W, where M =
{xr >0: Fy(x) > Fo(xz)} and W = {x > 0 : Fy(x) = Fp(x)}. Since fp is a
density, it follows that Fp is continuous, as is ﬁo, and therefore W is a closed
set and M is open. For a fixed point zg € M, we thus know that x( lies
in some open interval. Indeed, let ay = sup{z < z¢ : Fo(z) = Fy(z)} and
bo = inf{x > o F\o(x) = F()(J})} Then x¢ € (ao, bo) with (ao,bg) C M.

Two examples are given in Figure 1. For the first example we have

B 1.5  2€][0,0.5]
(2.1) fol) = {x—&% z € (0.5,1].

Here M = (0.5,1) and W = [0,0.5] U {1}. For the second example we have

B 12(x — 0.5)2 z €[0,0.4] U [0.6,1]
(2:2) fol®) = { 0.04 z € (0.4,0.6)

Here M = (0.25,1) and W = [0,0.25] U {1}.
The next proposition gives some additional properties of the KL projec-

tion.

PROPOSITION 2.3.  The density, ]?07 satisfies the following:
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1. Fiz zg € M and define ag,by as above. Then by < oo, and ﬁ) 18
constant on (ag, bp] and satisfies the mean-value property

) = 2 [

fo( )dx

2. Suppose that f fe(z)dr < oo. Then fo = argmingeffooo(g(m) —
fo(x))?*da.

3. For any increasing functwn h(x fo x)dr < fo ) fo(x)dx

4. Let go € F and let Go(y fo go(z)dz. Then

sup [Fo(z) — Go(z)| < sup|Fo(z) — Go(a)].
x>0 >0
Point (3) above tells us that if g is increasing then po(g) > fip(g). Point (4)
is Marshall’s Lemma (Marshall, 1970). The proof of Proposition 2.3 appears
in the Supplementary Material.
Suppose that X1,... X, are independent and identically distributed with
density fo on Ry = [0,00). Let f, denote the Grenander estimator of a
decreasing density

fn= argmaxgefflog g(x) dF,(x),

where F denotes the class of decreasing densities on Ry, and F,(z) =
nt Sy T (X;) denotes the empirical distribution function. The next
theorem is our first main result.

THEOREM 2.4. Fiz a point xg € M, and let [a,b] denote the largest
interval I containing xo such that 130(1’) is linear on I. Let U denote a
standard Brownian bridge process on [0,1], and let Ug,(z) = U(EFy(z)) for
z € Sy. Then

~

Vi Fulwo) = folwo)) = grenyyyy (UE™) (o),
where

Umod( ) _ { UFO(U) u € [CL, b] NnwW,

—00 u € [a,b] N M.
If it happens that [a,b] N W = {a,b}, then
Vi fu(@o) = folwo)) = oZ,

where Z is a standard normal random variable and

7 = Faton) [ = Falao)]
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Fi1G 2. Empirical quantiles of \/ﬁ(fn(xo) - fo(mo)) vs. the true quantiles of the limiting
N(0,0?) distributions at the point zo = 0.75 for fo given by (2.1) in the top row (o* =
3/4) and (2.2) in the bottom row (0 = 7/16). The sample size varies from n = 10 to
n = 100000. The straight line goes through the origin and has slope one. Each plot is based
on B = 1000 samples.

Recall that Patilea (2001, Corollary 5.6) shows that the rate of conver-
gence (in Hellinger distance) of fn to fo is n/3. The above theorem shows
that the local rate of convergence will be y/n where the KL projection is
flat. When the KL density is curved, the KL density and true density are
actually equal, and hence the convergence rate from the correctly specified
case applies. The next formulation of the limiting process is similar to that
of Carolan and Dykstra (1999) for a density with a flat region on [a, b].

REMARK 2.5. Let py = Fy(b) — Fy(a) = Fo(b) — Fo(a). Since Fy is linear
on [a,b] the limiting distribution may also be expressed as
mo 1 mo To—a
greng, ;) (UFO d) (o) = P a {Z + /po gren(U™) <b—a> } ,

where Z is a mean zero normal random variable with variance po(1 — po),
U s an independent standard Brownian bridge, and

mod _ U(“’) uE([a,b]ﬁW—a)/(b—a),
Um(u) = {oo u € ([a, b)) "M —a)/(b—a).

Notably, if [a,b] "W = {a, b}, then gren(U™°)(u) = 0.
Figure 2 illustrates the theory. The convergence is surprisingly fast, al-
though it appears to be a little slower in the second example (2.2). We con-

jecture that this difference is caused by the presence/absence of the strictly
curved region of fy.
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PROOF OF THEOREM 2.4. By the switching relation (Balabdaoui et al.,
2011), we have

P (Va(falwo) = folwo)) <'t)

- p (argmaxzzo {Fn(z) — (folzo) + n_1/2t)z} < :c)

— P (argmax.oo { V71 (Fu(2) = Fu(a) — (Fo(2) — Fo(a)))

+vn <F0(z) — Fyla) — folxo)(z — a)) - tz} < x) .
We now look more closely at the “second” term. That is,
Fo(2) = Fo(a) = fo(o)(z — a)
= —{B) - Ro2)} + {Fo(2) - Fola) = Jolwo)(z — )}

noting that Fy(a) = Fy(a), since a € [a,b] N W. On the other hand, for all

z € [a,b] N M, we have Fy(z) > Fy(z). Furthermore, Fy is concave with
derivative fo(zg) (at any point z € (a,b)), and hence

Fy(2) — Fy(a) — fo(zo)(2 —a) <0

for all z > 0. For z € [a,b] N W this is an equality, and a strict inequality
otherwise. Therefore, the weak limit of

Vi {Fa(z) ~ Fa(a) = (Fo(z) — Fo(@))} — v (Fo(2) — Fola) — folwo)(z — a))

is U”FEOd(z) —U%O"d(a) = U}’E"d(z) —Ug,(a), for all z € [a, b]. For z ¢ [a,b]NW,
the limit of this process is always —oo, and therefore the maximum must
occur inside of [a, b]. By the argmax continuous mapping theorem (van der
Vaart and Wellner, 1996, Theorem 3.2.2, page 287),

P (Va(fu(wo) = folwo) < t) = P (argmax.cpoy {UR“(:) -t} < )

_ p (gren[avb]( mod) (30 < t) ,
by switching again. When [a, ))NW = {a, b}, then the least concave majorant
is simply the line joining Ug, (a) and Ug, (b), with slope equal to
UFO (b) — UFO (a’)
b—a ’

a Gaussian random variable with mean zero and variance

T - 22 (Fold) = Fo(@) [1 = (Fo(b) ~ Fof@)] = Folo) [bia _ fo(xo)] .

O]
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PROOF OF REMARK 2.5. Recall that F, is linear on [a, b]. Therefore, for
r € [a,b], we can write U(Fp(x)) — U(Fo(a)) = 7= W + V(z), where

V(z) = U(Fo(x)) — U(Ep(a)) - }m

b—a

Since all variables are jointly Gaussian, a careful calculation of the covari-
ances reveals that W and V(z) are independent (also as processes), and W
is mean-zero Gaussian with variance po(1 — pp). Furthermore,

V(s) L \/po U (Z:Z)

This decomposition is similar to that of Shorack and Wellner (1986, Ex-
ercise 2.2.11, page 32). Now, note that the Grenander operator satisfies
gren(, ) (9)(@) = B+ 2% grenyp y (h) (£2) if g(t) = o+ Bt + vk (£2) . Tt
follows that

— 1 \/]TO Tog—a
greng p) (UF0> (vo) = b—a Z + — gren(U) (ba) ,

with Z, U defined as in the Remark. The full result follows since, U’Ifiof’d(x) =
UZod(z) = F=gW + V(). O
0

3. \/ﬁ-convergencerf linear functionals. Consider a density fy
with support Sy and let fy denote its KL projection. We write Sop = S.USy,
where S, denotes the portion of the support where fq is curved and Sy de-

notes the portion of the support where fo is flat. By definition of Sy as well
as Proposition 2.3, the KL projection can be written as

(3.1) fo(z) =201 G 11, ()

on Sy, where the intervals are disjoint and each is of the form I; = (a;, b;].
Our results for linear functionals hold under the following assumptions.

(S). The support, Sy, of fy is bounded.

(C). When the KL projection is curved, sup,¢s, |f(z)| < +o0.
(P). The true density is strictly positive: inf,eg, fo(z) > 0.
(F). When the KL projection is flat, J is finite in (3.1).
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F1c 3. Empirical quantiles of \/n(fin(g) — lio(g)) with g(z) = x vs. the true quantiles of
the limiting N(0,02) distribution for fo given in (2.2), with o® = 0.07032.

Let g : Sop — R and define [i,,(g) by (1.2). Then we require that g satisfy the
following conditions.

fs |/ (z)|dx < oo.
(G2) g € Lg(Sy) for some > 2.

In order to state our main result for linear functionals we need to define
the following functions,

52 B = o -ajura) el
’ 7 = (bj — aj) f g(x
_ g(z) T € Sc,
Thus, gy, ...,7  are the local averages of the function g, and each g;(u) is a

localized version of g.

THEOREM 3.1.  Suppose that the density fo satisfies conditions (S), (C),
(P), and (F). Consider a function g : So — R which satisfies conditions
(G1) and (G2). Let U,Uy,...,U; denote independent Brownian bridges,
Up, () = U(Fy(x)), and define [U;?wd as in Theorem 2.4. Then

Vv (fin(g) = Tio(9)) = 9(z)dUr, (z)

So

J 1
+Z VPj / g;(u) gren(U7*%) (u)du,
j=1 0

where pj = Fy(bj)—Fy(aj) = F\o(b i)— Fo(aj) Furthermore, fs x)dUp,(x) =
fSo g(x)dUg (). Also, if I; "W = {a;,b;}, then gren([U;”Od) = O



GRENANDER UNDER MISSPECIFICATION 11

It follows that v/n(fin(g9) —fo(g)) will converge to a Gaussian limit for true
density (2.2) but not for (2.1), as the latter has well-specified flat regions.
A simulation for (2.2) is shown in Figure 3. The proof of Theorem 3.1 is
given in Section 6. The simulations show that there appears a systematic
bias prior to convergence (the empirical quantiles appear on the z-axis in
Figure 3, the negative bias translates to a left-shift in the plot). The proof of
Proposition 6.1 shows that one source of the bias is the term /n [ xd(ﬁn -
F.) ~ —/n f(ﬁn —F,) < 0. When Sy = S, this term is the only source
of bias, and from Kiefer and Wolfowitz (1976), it converges to zero at a
rate of at least n'/6(logn)~%/3. Since (3) of Proposition 2.3 also holds at the
empirical level, similar behaviour will be seen for all increasing functions g.

The results of Theorem 3.1 also show that /n(fi,(g) — fio(g)) is asymp-
totically normal with variance vary, (g(X)) = var 7 (9(X)) if Sp has no well-
specified flat regions. Additionally, if So = S., then g(z) = g(x) and the
model is well-specified. In this case, ji,(g) has the same asymptotic distri-
bution as the empirical estimator n=! > | g(X;) (see also Proposition 6.1).
This shows that the maximum likelihood estimator is asymptotically effi-
cient, as in the strictly curved case the family of decreasing densities is
complete, and hence the “naive estimator” n='>""  ¢(X;) is asymptoti-
cally efficient (van de Geer, 2003, Example 4.7).

Finally, we make a few comments on the assumptions required for Theo-
rem 3.1 to hold. The assumptions which we use on S, are (S), (P), and (C).
These are quite standard assumptions in the literature for the strictly curved
setting, see for example Kiefer and Wolfowitz (1976); Durot et al. (2012);
Kulikov and Lopuhaé (2008); Groeneboom et al. (1999); Durot and Lop-
uhaé (2013). In the misspecified region, the required assumptions are (P),
and (F). Note also that by Remark 3.2, the assumption (G2) is required in
the result. Additional discussions of these assumptions, including directions
for future research, are provided in the Supplementary Material.

To further illustrate these assumptions, as well as Theorem 3.1, we con-
sider the examples (2.1) and (2.2). In example (2.1), we have that

(34) !}/{)(IL‘) = 1.5 1[0’0_5] (33) + 0.5 1(0.571] (ZL’)

The conditions (S) and (P) are clearly satisfied, as is (C) since Sy = Sy.
Lastly, (F) holds with J = 2,31 = 1.5,3» = 0.5, 11 = (0,0.5], I = (0.5, 1].
Applying Theorem 3.1 for g(x) = z, we find that g(x) = 0.751)9o5(z) +
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0.251(g5,1(w), and Io "W = {az2, b2} (hence gren(Ug?) = 0). Therefore,

Viin(9) — fio(g) ¢/ 2)dUR, (z f / % gren (U7 (u)du

(3.5) = —2UFO(O.5)+\/;/O ugren(Uy)(u)du,

where Up,, U; are independent Brownian bridges as defined in Theorem 3.1.
Notably, the limit has a non-Gaussian component.
Example (2.2) can be analysed similarly. Here,

foz) = 12(z - 0.5) 110,0.25) (%) + 0.75 1 (g 25,11 ().

Again, the conditions (S) and (P) clearly hold. On S, = [0,0.25], we have
sup,es, |fo(2)] = 12, and therefore condition (C) holds. On Sy = (0.25, 1]
we have J = 1 and hence (F) also holds. Applying Theorem 3.1 for g(x) = =
we find that g(x) = x 1j0.95](7) + (5/8)1(0.25,1)(), and [y "W = {a1,b1}
(hence gren(U7*?) = 0). Therefore,

Vn(iin(g) — fio(g)) = / z)dUF, (z

That is, the limit is zero-mean Gaussian with variance o2 ~ 0.07032.

REMARK 3.2. Marginal properties of the process gren(U) were studied
in Carolan and Dykstra (2001). The results include marginal densities and
moments, including E[(gren(U)(x))?] = 0.5(2?/(1—z)+(1—x)? /). It follows
that E[fo1 (gren(U)(z))?dz] = [, (1 — x)?/xdx = oo, and hence the limiting
process

1
< g,gren(U) > = /Og(at)gren(U)(a:)d:c,

exists only for g € Lg(Sy) for > 2. We would therefore not expect conver-
gence of [in(g) for g € Lg(Sy) with 5 € [1,2].

4. Beyond linear functionals: a special case. Entropy measures
the amount of disorder or uncertainty in a system and is closely related to
the Kullback-Leibler divergence. Let T'(f fo x)log f(x)dx denote the
entropy functional. A review of testmg and other apphcatlons of entropy
appears, for example, in Beirlant et al. (1997).
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FIG 4. Empirical quantiles of /n(T(fn) — T(fo)) vs. the true quantiles of the limiting
N(0,0?) distribution for fo given in (2.1), with o* = 0.2263.

THEOREM 4.1.  Suppose that ﬁ) 1s bounded, the support of fo is also
bounded, and that fo/fo < c3 < co. Then

Vi (T(F) - T(R) = o7,
where Z 1s a standard normal random variable and
0 = vary, (log(fo(X))) = var ;. (log(Jo(X)))-

The proof is made up of two key pieces: (1) tight bounds on the likeli-
hood ratio from Lemma 4.2 and (2) specialized equalities which hold for the
Grenander estimator.

LEMMA 4.2, Suppose that fo 1s bounded, the support of fo is also bounded,
and that fo/fo < c3 < co. Then

/ 1ogédu«‘n = 0,(n7¥3).
fo

We note that the conditions we require here are stronger than those of

Patilea (2001, Corollary 5.6). However, under those conditions Patilea (2001)

establishes convergence rates on [ log fQjcf}A
n 0

our purposes. The condition that fy/ fo is bounded above was also used in the

study of misspecification in van de Geer (2000, Section 10.4). The condition

that the support of fy is bounded is the strongest, whereas the condition

that fy is bounded may be relaxed somewhat. We discuss this further in the

Supplementary Material.

dFF,,, which is not sufficient for

PrOOF. We first show that [ go(fn)d(ﬁn —TF,) = 0 for any function ¢.
This follows since F,(z) > F,,(x) with equality at finitely many touch points,
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and also ﬁb is constant between all touch points. Thus, letting 7,70, ..., 7y
enumerate the (random) points of touch, we have

| eEaB=F) = S eFatm) (B = Ba)(m) (B = (i)

i=1

with 79 = 0 and 7., = X(;,). A similar argument also establishes that

(4.1) /0 T o(Foyd(Fo - Fy) = /M o(Fo)d(Fy — Fo) = 0.

For ¢(v) = logwv, it follows that
Vi (15~ 1) = va( [1ogf.af, - [roefod)
I 7 d(F,
vir [ 1og (J%) 4B, + Vi [ log fod(F, - Fo).

The first term is Op(n_l/ 6) by Lemma 4.2. The second term has a Gaussian
limit with variance Varfo(log fo(X)). By (4.1) (with ¢(v) = log?®v,logv) this

is equal to varg - (log fo( ). O

A simulation of this result is shown in Figure 4 based on the true den-
sity (2.1). The KL projection of (2.1) is given in (3.4). One can easily check
that the conditions of Theorem 4.1 are satisfied in this case. Note that this
density has well-specified flat regions, and therefore linear functionals that
do not ignore Sy NV should have non-Gaussian terms in their limit; see, for
example, (3.5) for the case when g(z) = x. On the other hand, the entropy
functional will always result in a Gaussian limit. The simulations exhibit
a systematic positive bias. The proof shown above reveals the cause: The
term f log fn / fo)dIF > 0 since fn is the MLE. In the plots the quantiles
of vVn(T(fn) —T( fo)) are shown on the z—axis, and these quantiles appear
to be shifted to the right — that is, they are larger than the quantiles of the
limiting Gaussian distribution.

5. Conclusion. We anticipate that extensions of this work to other one-
dimensional shape-constrained models, such as the log-concave and convex
decreasing constraints, are within reach, although certain technical difficul-
ties will need to be overcome. In particular, the results of Patilea (2001)
for convex models should yield some results for convex decreasing densities
under misspecification. The Grenander estimator has a particular simplicity

0,
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of form, which we have exploited here. Some progress for the log-concave
setting has already been made in Balabdaoui et al. (2013), albeit for the dis-
crete (i.e. probability mass function) setting. We conjecture that statements
such as (1.3) will continue to hold for other shape-constraints in d = 1 for
linear functionals. Similar results for higher dimensional shape-constrained
models seem premature in view of the current lack of rate of convergence
results even when the model is correctly specified.

6. Proofs for Section 3. We now present the proof for Theorem 3.1.
We proceed by proving convergence results for the different types of be-
haviours of the density separately (curved, flat, misspecified), and combine
the results together at the end. We believe that the intermediate results are
of independent interest to the reader, and we also hope that this approach
makes the proof more accessible.

6.1. Strictly curved well-specified density. We first suppose that the true
density fy satisfies the conditions introduced in Kiefer and Wolfowitz (1976).

PROPOSITION 6.1.  Suppose that fo satisfies conditions (S) and (C), and
that g satisfies condition (G1). Then

Vn(fin(g) — molg)) = o2,

where Z is a standard normal random variable and o® = var(g(X)) < oc.
We note that this result is similar to that in Kulikov and Lopuhad (2008).

PrROOF. Without loss of generality, we assume that So = S, = [0, 1].
Let %, (g) =n~t >, g(X;) denote the empirical estimator of o(g). Using
Fubini, we have

~ —

o) Tl = | [ ) [Fute) ~ Bt o

< {Jﬂ@w}wmﬂw—M@N

TES,

From the results of Kiefer and Wolfowitz (1976) (see also Durot and Lop-
uhai (2013, Corollary 2.2)), we have that sup,cp 1 vnlFn(z) — Fpo(2)| =

0p(n~1%10g?? n). Therefore,

Vi(fin(9) = no(9)) = Vnlia(g) = po(9)) + 0p(n™"/Clog®? n),

from which the result follows. O
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6.2. Piecewise constant well-specified density. Suppose next that Sy =
Sy =WnNSy. That is, the true density is piecewise constant decreasing and
can be expressed as

J
(6.1) fo(x) = Z 4j1(a;0;)(®)
j=1

where ¢1 > ¢ > --- > ¢q; > 0, J is finite, and UI; = Sy where the sets
I; = (aj,b;] are disjoint. Indeed, we have b; = a;qq for j =1,...,J — 1.
Note that p; = gj(bj —a;). Also, let Uy, ..., U; denote independent standard
Brownian bridge processes (each defined on [0,1]), and let {Z1,...,Z;} be
an independent multivariate normal with mean zero and covariance diag(p)—

pp” for p=(p1,...,ps)".

PROPOSITION 6.2.  Suppose that fo is as in (6.1). Then \/ﬁ(fn(:l:) -
fo(x)) converges weakly to S(x) in Lo(Sf) = La(So) for any o € [1,2),
where

@) - % = {Z]- TV gren(U;) (‘”” “J’)}hj(x).

j bj —a;

A pointwise version of Proposition 6.2 was originally proved in Carolan
and Dykstra (1999). Here, we extend these results to convergence in L,
which is a much stronger statement, requiring tight bounds on the tail be-
haviour at a point of the kind proved in Groeneboom et al. (1999, Theorem
2.1). In the case of the decreasing probability mass function, ¢, k > 1
convergence has been established in Jankowski and Wellner (2009). An im-
mediate corollary of this work is convergence of the linear functionals fi,(g):
see Corollary 6.3 below.

Groeneboom (1986, Theorem 4.1) shows that for fy equal to the uniform
density on [0, 1] we have

1 1
N /0 Ful) = fol)|dz = /0 | gren(U)(@)|dz = 2 sup U(z),

0<z<1

where U is again a standard Brownian bridge process on [0, 1]. This is an
immediate corollary of Proposition 6.2 with J = 1. On the other hand,
Groeneboom (1983) (see also Groeneboom and Pyke (1983)) shows that

fol(\/ﬁ(fn(i”) — fo(x)))?dz — logn
V3logn

= Z ~ N(0,1)
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and hence convergence of \/ﬁ(fn(:x) — fo(x)) to gren(U)(x) in Lo([0, 1]) fails.
See also Remark 3.2.

COROLLARY 6.3.  Suppose that fy takes the form (6.1) with bounded sup-
port So = SyNW and with J finite. Suppose further that g satisfies condition

(G2). Then \/n(fin(g) — po(g)) = Y, where
J

v, = Z{gjzjwp? / lgj<u>gren<wj><u>du},

j=1
with g; and g; defined in (3.2).

In what follows, unless stated otherwise, we assume that Sy = [0, 1].

LEMMA 6.4. Suppose that fy is as in (6.1) with a discontinuity at a point
xg # 0. Then, for all ¢ > 0,

~

sup | fa(zo+ ) — folxo + )| = Op(1).
0<z<c/n

PROOF. It was shown in Anevski and Hossjer (2002, Theorem 2) that

(6.2) Falwo + t/n) — J0l07) JQr fo(zo+)

where h(t) is the left derivative of the least concave majorant (over R) of
the process

= h(t),

N(A(s)) — A(s) — {fo(ﬂfo—) ; fo(xo+) } 15|,

where the rate function is equal to

B fo(xo+)s, s>0,
Als) = { fg(mg—)s, s < 0.

Here, N denotes a standard two-sided Poisson process. The result in
Anevski and Hossjer (2002, Theorem 2) is established by a “switching” ar-
gument similar to that in the proof of Theorem 2.4. The switching argument
can also be extended to this situation even if fo(zo—) = fo(xo+). A sim-
ilar argument may also be used to show convergence in finite dimensional
distributions as well. We next show convergence of the supremum norm

~

fn(xo + ) — fo(xo + )

Jo(zo—) — fo(zo+)
2

sup
0<z<c/n

= sup
0<z<c

h(z) +

' = 0,(1).
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This is done by (1) showing that the convergence in (6.2) also holds in
DJ0,00), and (2) showing that this implies convergence of the supremum
norm (as above). Both of these steps follow exactly the same argument as
the proof of Theorem 1.1 in Balabdaoui et al. (2011), and we therefore omit
the details. O

LEMMA 6.5. Suppose that fo is decreasing on R and flat on (a,b] and
fiz x € (a,b). Then, for any ty > 0 and kg > 0, there exists a constant
co = to/(fo(b) + to/ko) such that

t(x —a)
2

P (ﬁz(x) > fo(z) + n_l/Qt) < exp {—Co } for all t > to,

for all n > (ko/3)2. Also,

t2(b — x)
Qf()(b)} for all t € [0,v/afo(x)],

and otherwise the probability is equal to zero.

P (Fua) < foe) = n 1) < exp{ -

PROOF. Let Fy(a,s) = Fy(s)—F,(a), and we write fo(a+) = limy_q, fo(z).
By the switching relation,

pP (fn(:z;) > fo(z) + n_1/2t>

— P (argmax,coy {Fals) — (folw) +n~?)s} > z)

= P (argmax 01]{Fn(a, s) = (fola+) + nY2) (s —a)} > :c)

< P (IFn > (fola+) +n"Y2t)(s — a)} for some s € (z, 1])
a,s a n12t)(s —a

= r (I;zgazss = ol Jl;o((l, s)t)( ) for some 5 € (z, 1]>
a,s n~1/2

= P (I;ZEG:S; >1+ fo(a-i-t) for some s € (z, 1]>

Fp(a,s) n~12t
= (s:?xpﬂ Fg(a,S) =1 fO(a+)>

Since F,(a, s) is a binomial random variable, we can bound the above us-
ing Shorack and Wellner (1986, Inequality 10.3.2, page 416), with h(v) =
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v(logv — 1) + 1 and ¥ (v) = 2h(1 +v)/v? > (1 +v/3)"L. It therefore follows
that

Fn(a,s) n~Y%¢
P su >14+ —-7
<s€(x 1] FO(aa S) fo((l-{-)

n-1/2¢
< exp {—nFo a, ) (1 + fo(a+)>}
t2 :E _ CL _1/2t
= exp{ 2fo! (fo(a+)>}
t(x — t/ fola+)
< exp{ 2 1+ (t/fola+))/(3v/n) } '

Write u = t/fo(as) and note that for all n > (ko/3)? we have

TTu/Gvn) = T+ujky

which is a increasing function of u. Fix ty > 0 and let ug = to/ fo(a+). Then,
with co = up/(1 + uo/ko) = to/(fo(a+) + to/ko) we have that

P (ﬁl(x) > fo(x) + nil/Qt) < exp {—co t <a: ; a> } .
We handle the other side in a similar manner.

P (Fu@) < fola) = n V%)
= P (argmaxse[()’l]{l@‘n(s, b) — (fo(b) —n~V2t)(z — b)} < :z:)

F,(s,b) n~1/2
P <F0(3, ) <1- o) for some s € [O,x))

. Fu(s,b) n~ %t
P | inf <1- .
<s€[0,m) F()(S, b) B fO(b)

We now bound this using the martingale inequality from Groeneboom et al.

(1999, Lemma 2.3).
n~1/2¢
exp {—nF(:J;,b)h (1 A ) }

o Fu(s,b) n” %
P <séfé,fx> Fo(s.0) = JolD) )
B Bh-x) [ nVH
- exp{ 2o(b) w( fo(b)>}'

IN

IN
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Now, note that since fA‘n is a density, we only consider t < /nfy(b) =
vnfo(x). Therefore, we bound only 1 (—v) for v € [0, 1], for which we have
that ¢)(—v) > 1. Thus it follows that

—~ 2 —x
P (fn(a;) < fo(z) — nfl/zt) < exp {_tQ(;O(b))} )
Let (z)4+ = max(x,0) and (z)- = min(z,0).

LEMMA 6.6. Suppose that fo is flat on (a,b] and fix z € (a,b), and fix
o > 0. Then, there exists a constant C' such that

B [[Vafu@) = fo@)-| ] < co-n=",
B [[Valfa@) = fo@)+| ] < C@—a)™,
with the second bound valid only for (x — a) > ¢y/n, for some ¢y > 0.

ProOOF. Using the bounds obtained in Lemma 6.5, we find that

B [|Vah@) ~ faa)-|] = [ et PUa(ue) = ota)- > oy
= /0 ot )ato‘flP(ﬁl(m) < fo(z) —n~V2t)dt
00 20h _ &
< /0 ato‘_lexp{—t ;;0(5))}(#
= T(1+a/2) <2f0( )>a/2.

x
For the second inequality, we first fix tg > 0. We then have

B[Vt - )+ [] = [t P - fole)) > 0

0

= [t P ate) > ot + 0
0
+ /OO at® P(fo(x) > folz) +n~?t)dt

t8‘+ at®ex { }dt

< t0+F(a+1)< 2 )>a.

co(r —a

IN
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Now, recall that ¢q takes the form to/(fo(b) + to/ko). Therefore, we obtain
the bounds

[(a+1) (2)>a < 2°T(a+1)(z —a)™® (fo(tho/"?OY

co(x—a to

< Co(1+K)® (fo(b) >at5a,

r—a

as long as tg/ko < K fo(b) for some choice of K. We optimize the entire
quantity in g to find that

7 < A (fo(b)>“/27

r—a

E [Wﬁ(m) — fol2))+

for some new constant A,. Now, in order for this optimized bound to hold,
we need tg < K fo(b)ko, and

K2 fo(0)’ki > Ca(l+ K)® (f‘)(b) )

r—a
The latter translates to (x —a) > ¢on™! by using k3 < 9n. O

PROOF OF PROPOSITION 6.2. The outline of the proof is as follows. We
first require pointwise convergence, which follows from Carolan and Dykstra
(1999, Theorem 6.4). One can also easily extend this to convergence in finite
dimensional distributions. The particular form of the limit follows from the
following decomposition of a (time-transformed) Brownian bridge, which is a
generalization of Shorack and Wellner (1986, Exercise 2.2.11, page 32). Let F
denote any distribution function with compact support, which, without loss
of generality, we assume to be [0,1]. Let 0 = a1 < by =ags < ... < bj_1 =
ay <by=1.Let V,Uy,...,U; denote independent Brownian bridges. Then

J .
V(F(t) = Z ZAV(F(ai))+AV(F(ai))M

(6.3) +V F(bi) — F(a;) U; <M> } L b, (t)

where AV(F(a;)) = V(F(b;)) — V(F(a;)).
Recall that the Grenander operator satisfies gren(a + bt 4+ ch(t)) = b+
cgren(h(t)). Also note that Fp is linear on (a4, b;] by assumption. Therefore,
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from Carolan and Dykstra (1999), the limit of \/ﬁ(fn(:n) — fo(z)) at a point
x € I; = (a;, b;] can be written as

gren(g, b (V(Fo(t))) = AV(F(ai))

; ! =+ Vpigren (U%’ (sz—i))
_ 1 {AV(F(ai))+\/Egren(Ui) (t_ai )}

b, — a; bi —a;

from the above characterization. Finally {AV(F(aq1)),...,AV(F(ay))} 4
{Z1,...,Z;} as in Proposition 6.2. R

The second step is to show that the process S, (z) = v/n(fn(z) — fo(x))
is tight in L, (S). For this, we first need a characterization of compact sets
in Lo(S) for a« > 1. These appear, for example in Dunford and Schwartz
(1958, page 298) (see also Simon (1987)). For S bounded, a set K C L, (S)
is relatively compact if for all f € K

L supsexe [ 1f(2)|%dz < oo,
2. limg o supsexc fs |f(x+9) — f(x)|*dx — 0.

We want to show that for each € > 0 we can find a compact subset K = K,
of Ly (S) such that limsup,, P(S,, € K¢) < e. Thus we want to show that

(6.4)  limsup, P (fol ISy (z)|*dz > M) —0 as M — oo, and
(6.5) lim sup,, P (fol [Sp(x 4+ d) — Sp(x)|*dx > e) =0

as & — 0, for every € > 0.
To show the first of these we proceed as follows: for fp as in (6.1),

Jo 18a(@)*dz = 33/ [y, ) 1Su(x)|*da,

and hence we have

(6.6) P ( S ISn(@)[dz > M) <y, P ( Sia 1) 1Sn (@) > M/J) .
Thus, it suffices to show that

n

lim sup P </ IS (x)|“dx > M) —0
(a,b]

as M — oo for each fixed (a,b] with fy flat on (a, b]. Now,

P (/ Sn(2)]dz > M) < p </ Sn(2)|da > M/2>
(a,b] (a,a+¢o/n]

(6.7) 4P / S (2)[*de > M/2 ) ,
(a+éo/n,b]
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and we handle each term separately. From Lemma 6.4, it follows that
[ @l = [ ) - fl)fde
(a,a+¢o/n] (a,a+¢o/n]
(6.8) = n*26n710,(1) = 0,(1)

for a < 2. For the second term, we use Markov’s inequality, Lemma 6.6, and
Fubini’s theorem to get

P / Sn(@)|"dz > M2
(a+¢o/n,b]
2
2 g / EISn(2)|* da +/ EIS(z)_|* da
M (a+éo/n,b| (a+¢o/n,b|

(6.9) < 2°C / (x—a)_o‘/2dac+/ (b—2)"*2dzy < C/M,
M | Jiapy (a.b]

for some new, finite, constant C depending on a, b, o, noting that a < 2.
Combining (6.8) and (6.9) yields (6.4) for our choice of fj.
Now, to prove (6.5). Since fy(z) is constant for x € (aj;, b;] for each j, the

IN

A

processes S, (r) = \/ﬁ(fn(x) — fo(x)), are piecewise monotone, and hence
the convergence in Ly ((aj,b;]) for a € [1,2) and each j < J follows as in
Huang and Zhang (1994, Corollary 2, page 1260). We conclude that (6.5)
holds, and hence S,, is tight in L (S) when o < 2. O

PROOF OF COROLLARY 6.3. Convergence follows immediately by conti-

nuity of the linear functional [ g(z)Sy(x)dz by Holder’s inequality. We need
only check the final form, that is, [ g(z)S(z)dz is equal to

Z{ZZW+\/E/ bg( Lgren(Ui) <b~a4> dx}
i=1 v i a; Y1 i i i
Z{ ﬂ“g( +\/@/ b—alu—l—al)gren([U)()du}.

b, — a;

j=1
O
6.3. Piecewise constant KL density. We next consider the case that ﬁ)(m)

can be written in the form (3.1) with condition (F). Let Uy, ..., Uy, denote
independent standard Brownian bridge processes (each defined on [0,1]),
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and for each j define U;”Od as in Remark 2.5 with I; = [a;, b;] replacing
[a,b]. Also, let {Z1,...,Z;} be an independent multivariate normal with
mean zero and covariance diag(p) — pp” for p = (p1,...,ps)T, where p; =

Fo(bj) — Fo(aj) = Fo(by) — Fo(ay).

PROPOSITION 6.7.  Suppose that fo satisfies conditions (P) and (F) with
So = S and that g satisfies condition (G2). Then /n(fn(x) — fo(x)) con-
verges weakly to S (z) in Lo (S) for a € (0,2), where

J

j=1 J J

{z + /pj gren(U7) ( — % ) } L(a; ,)(%)-

bj —a;

COROLLARY 6.8. Suppose that fo satisfies conditions (P) and (F) with
So = Sy and that g satisfies condition (G2). Then /n(fin(9) — fo(g)) = Y7,
where

J 1
Y}md = Z {gj Zj+ \/E/O gj(u) gren(U;-”"d)(u)du} .
j=1
with gj(u) and g; defined as in (3.2).

The proof of these results is very close to that of Proposition 6.2, and
we omit any details which are the same. The difference lies in the follow-
ing modifications to Lemmas 6.4 and 6.5. Note that we add the additional
requirement that fo be bounded below (P).

LEMMA 6.9. Fiz a point x € Sy and let [a,b] denote the largest interval
I such that x € I and fqy is constant on I. Then, for all ¢ > 0,

sup | fn (a+ u) ‘ =
0<u<c/n

PROOF. By the switching relation, it follows that

P (Jala+u/n) = fola+u/n) <t)

P( Fula+u/n) — fo(b) <t)

— P (argmax.c {Fa(2) = (Jo(®) + )2} < a+u/n)
P (n(axgmax.ep y {Fa(2) = (Job) + 1)z} = a)< w),
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and the inner process

n (argmax.co) {Fa(2) = (o(b) + 1)z} - a)

= argmaxys o {Fala+ h/n) = (L+ fo)(a+ h/n) }
= argmaxp>_pg {Vn(h’)} )

where Vy,(h) = Apn(h) + By(h) —th, with A, (h) = n(Fp(a+h/n) —Fn(a)) -
n(Fo(a+ h/n) — Fy(a)) and B, (h) = n(Fy(a + h/n) — Fy(a)) — fo(b)h.
Now, the term N, (h) = n(F,(a + h/n) — F,(a)) is binomial with mean
n(Fy(a+h/n) — Fo(a)) — fo(a)h. Therefore, A, (h) converges to a centered
Poisson random variable with mean fp(a). A similar argument may be used
to show convergence as a process of Ay, (h) = N(h) — fo(a)h, where N(-) is
a Poisson process with rate A(h) = fo(a). The second piece, By, (h) satisfies

1 =0 hen{la,bjnW —a}
n Ba(h) {< 0 hen{labnM—a} -

Thus, if for all 6 > 0 [a,0) N W = {a} then the limit of B,(h) is 0 if
h = 0 and is equal to —oo otherwise (we will call this setting case (A)). If
the above assumption is not true (we will call this setting case (B)), then
lim;,_yo0 Bn(h) = 0 for all h > 0. In case (A), it follows that the limit of
Vn(h) is equal to 0 at h = 0 and is equal to —oo otherwise. Therefore,
argmaxy~o{Vn(h)} = 0 here. In case (B) the limit of V,,(h) is a centered
(a.k.a. compensated) Poisson process with rate fo(a). We therefore have
that, in case (A),

P (fala+u/n) = fola+u/n) < t)
= P (argmax;s_,q {Vn(h)} <u) — 1,
and in case (B),
P <ﬁl(a +u/n) — ﬁ)(a +u/n) < t) = P (argmaxhz_na {V,(h)} < u)
— P (argmax;,>o {N(h) — fo(a)h — th} <u),

which gives us pointwise convergence in distribution in both cases.
Lastly, note that fo(a+u) = fo(b) is a constant, and f,,(a+u) is decreasing
in u by definition. Therefore, supy<,<c/n [fn(a +u) — fola +u)| = |fu(a) -

fo(b)|, which converges as described above. O
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LEMMA 6.10. Suppose that ﬁ) is flat on (a,b] and fir x € (a,b). Assume
also that infye(,p fo(r) = ao > 0, and let ¢o = o/ fo(b). Then, for any
to > 0 and ko > 0, there exists a constant cy = to/(fo(b) + to/ko) such that

t(x — )

5 } for all t > to,

P (fn(:n) > on(x) + n_1/2t> < exp {—80 o

for alln > (ko/3)2. Also, for all t € [0,/nfo(x))],
~ ~ _ _t2(b— )
P (fn(flf) < fo(z) —n 1/2t> < exp {_602]?0(33)} ;

and otherwise the probability is equal to zero.

PROOF. Let F,(a,s) = Fn(s) —Fn(a), and we write § = fo(z). Repeating
the argument for the proof of Lemma 6.5 we obtain that

P (fn(:n) > folz) + n_l/Qt)

Fo(a,s) _ (0 +n Y2t)(s —a)
< >
< P (Fo(a, 5 = Fola.s) for some s € (z,1]
Fr(a, s) (0 +n"12t)(s — a)
< P su > inf
(se(m?l} Fo(a,s) ~ se(a] Fy(a,s)
—1/24\( e _
< P sup F,(a,s) > inf (0 +nA t)(s —a)
s€(,1] Fo(a,s)

since ﬁo(s) > Fp(s) with equality at s = a,b. Applying the exponential
bounds for binomial variables as before, we find that

F,(a,s) n~1/2t
P sup >14+—=
(se(m,l} F()(CL, 5) 0

n~1/2¢
< exp{ —nFp(a,z)h [ 1+ 7

< exp —[ inf fo(x)] tz—a) t/§
= velall @ 2 1+(t/0)/(3vn) |
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Therefore, assuming that inf,c(, ) % = ¢p > 0, we can repeat the same

argument as for Lemma (6.5).
We handle the other side in a similar manner.

P (fn(a:) < folz) — n*l/%)

< P( e (80 sup (5—”‘1/215)(5—5))

B s€[0,z) F0(87 b) B s€[0,z) FU(Sv b)
F,.(s,b) n~1/2t
< P| inf <1-
<se[o,x) Fo(s,b) — 0

We again bound this using the martingale inequality from Groeneboom et al.
(1999, Lemma 2.3).

) F,.(s,b) n=1/2¢
P f <1-
(561%(1)737) FO(Sa b) N

)

IA
e}
X
Lo]
—N— ——
|
3
-5
E‘?
=
>
) —
J—
|
:l
| =
%)
~
N———
——

6.4. Putting it all together.

Proor oF THEOREM 3.1. To illustrate the method of proof, we consider
a simplified case. Since g € Lg(Sy) for some 5 > 2 and S, converges in Ly(S)
the proof easily extends to a general setting. Suppose then that S. = [0, a]
and Sy = [a, b], so that the support is Sp = [0, b]. Furthermore, we assume
that on Sy we have J = 1. Let U, (z) = y/n(F,(z) — Fy(x)). Then

Vn(fin(9) = Fo(9))
a b R
= /0 g(x)dUp(x) +/a g(z)vn (gren(]Fn)(m) - fo(:v)) dz + &,

where e, = /n [ g(2)d(F,, — Fp)(x). From assumptions (C) and (G1) it
follows that e, = 0,(1) as in Proposition 6.1.
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Next, let W, = Uy, (b) — Uy,(a), and let V,,(z) = U, (z) — Up(a) — 7=2 W,

a

for x € [a, b]. Lastly, let {(z) = Fy(a) + fo(b)(a} —a). Then for z € (a,b),

Vit (gren(E,)(x) = fo(@)) = v (gren(Fa)(@) — o))

= gren(U, +/n(Fy — 1))
1
= mwn + gren(Vn + \/E(FO — é)),
and we also define V¢ =V, + \/n(Fy — ). Therefore, v/n(fin(g) — fio(g))
is equal to

a b b
/0 (@)U (@) + Wz [ gl + [ gla) men(Vot)(@)de + 0,(1)

b b
- / 3(2)dUn () + / 9(x) gren(VIo) (z)dz + 0,(1),
0 a

from the definition of W,, and of g. The weak limit of V¢ can be established
similarly as in Theorem 2.4 and Remark 2.5. The outline of the rest of the
proof proceeds as follows:

1. Joint weak convergence of {fob gdU,,, Vmed(z1) .. Vmod ()} to a Gaus-
sian limit.
2. Joint weak convergence of {fob gdU,, gren(V74) (1), ..., gren(V7) (z)}
via the switching relation.
3. We have that
gren(V)(e) = Vi (Fule) ~ o)) — 2

W,

where in Proposition 6.7 we showed that the first term on the right
hand side is tight in L, (a, b). The second term on the right hand side is
a tight constant, and therefore gren(V7°%)(z) is also tight in L /(a, b).

4. From (1) and (3) we obtain marginal tightness of the terms f; gdU,, in
R and gren(V™°%)(-) in Ly (a, b), which implies joint tightness in Rx L.
The full result now follows by the continuous mapping theorem.

Lastly, we note that since Fy(z) = Fy(z) at z = a,b and 7 is constant on
[a, 0] then [g g(z) dUR,(z) = [, 9(x) dUg (2). O
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Abstract: In this supplement we present some additional proofs, and dis-
cuss further the assumptions of the main manuscript.

Additional Proofs

Proof of Proposition 2.3. (1). Let £ denote a general linear function. Then Fp (o) =
min{f(zg) : £ > Fy}. Now consider, ¢(x) the (specific) linear function which
passes through the points (ag, Fo(aog)), (bo, Fo(by)). Then clearly, there is no lin-
ear function which always lies above Fy and strictly below £ on (ag, bg). It follows
that Fy(z) = £(z) on (ag, by).

Next, suppose that Fy(ag) < 1, with ﬁo(ao) = Fy(ag) but with ﬁo(x) > Fo(x)
for all x > ag. Since Fy is increasing, it follows that any straight line ¢(z) such
that £(ag) = Fp(ap) and £(x) > Fo(x) has the form ¢(x) = Fy(ag) + m(z — ap)
with m > & for some & > 0. But then Fy(z) > Fy(z) + 6(x — ao), which implies
that limg,_ o ﬁo(x) = 00 > 1, a contradiction to the fact that fo is a density.

The last statement follows immediately since ﬁo(bo) — ﬁo(ao) = Fo(by) —
Fy(ap) and F, is linear on (ao, bo).

(2). Define ¢(g) = [;*(g(z) — fo(z))*dz. Recall that any (left-continuous) de-
creasing function may be written as g(z) = [ 1j0.)(@)dpg(y), where pg is a
positive measure. We will use this “decomposition” throughout this proof.

To prove the result, we show that a function f; minimizes ¢(g) over D, the
space of decreasing nonnegative functions on R, if and only if (M) holds, where

M) = Fyly) = fi J?o(a:)d:c > Fy(y) for all y > 0,
and fOOO(FO — FO)(gc)de0 (r) =0.

We first show that a function f, which minimizes ¢ must satisfy (M). To
do this, we calculate the directional derivative of ¢(g), Viyp(g) =[5~ b(z)(g —
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fo)(x)dx. Then, if ¢(g) > <p(f0) for all g, it follows that ngo(ﬁ)) > 0 for all
b such that fo +eb € D for sufficiently small € > 0. Similarly, if fo +ebeD
for sufficiently small € > 0, then ngp(fo) = 0. Choosing b(x) = 1j9,;(z) yields
Foy) — Fo(y) >0, and b = fo yields [;°(Fy — Fo)(x z)dpg () = 0.

We will next show that a function which satisfies (M) is the least concave
majorant of Fy. That ﬁo satisfying (M) is a concave majorant is immediate
from the definition. Note also that both ﬁo and Fj are continuous, and therefore
{z: Fo(x) > Fy(z)} is open. Therefore, if y is such that Fy(x) > Fy(z) at x =y
then this must also be true for all x € (y — d,y + ), some § > 0. It follows then
from (M) that 7 ((y :5,y +0)) = 0. Let ao = sup{z < z¢ : Fo(z) = Fy(z)}
and by = inf{x > ¢ : Fy(x) = Fy(z)}. Then Fy > Fy on (ag,by) and, from our
previous arguments it follows that pz ((ao,bo)) = 0. Note that by < oo, since
otherwise 117 ((ao, 00)) = 0 which implies that Fy(x) = Fy(ao) for all 2 > ag and
hence FO( ) = Fo(z) for all x > ag. From the characterization, this implies that
fo is constant on (ag, bp) and hence F} is linear on [ao, bo]. Since ﬁo(x) = Fy(x)
at = ag, bg, there exists no smaller concave function than 130 on [ag, bg] which
is also greater than Fjy. Therefore, 130 is the least concave majorant of Fp. Note
that this implies that lim, . Fo(x) = 1, that fp is a density, and also that
fo(a:) < 1/z. In particular, we learn that f:o T,de < o0, for all € > 0.

To complete the proof, we need to show that if ﬁ) satisfies (M), then it
must minimize ¢ over D. Suppose then that there exists ¢ > 0 such that
Fo(z) > Fo(x) for all € (0,6]. Then Fjy is linear on (0, d], which implies that
fo(04) < cc. In this case, I° f2dx < co. If there is no such 8, then there exists
a sequence &, — 0, such that Fj (en) = Fo(en). In the former case, the proof
below is simplified greatly (i.e take €, = 0), and therefore we consider only the
latter.

Now, assume that f (g — fo)Qda: < 00, as if it is not, we automatically have
that fE (Fo — fo)%dx < f — fo)?dz < o(g) for all &,. We may thus also
assume that g(x) < oo for all T > &,. Then,

/:0(9 - f0)2d33 - /:O(J?o - f0)2d33

n n

N /f {<9— fo)? +2(g — fo)(fo - fo)}dm

n

> 2/ (g~ Fo)(Fo — fo)da

n

Note that for @ > 5, g(z) =[5~ Loy ()dpg(y) = [ 1jo.4)(2)dpg(y). Writing

g and fo both in terms of this revised decomposmon7 we find that the second
term is equal to

2/5:)0 /Ejo 1[0,y]($)(ﬁ) — fo)(x)d(pg — Mfo)(y)d:v

imsart-generic ver. 2012/04/10 file: gren_annals-suppl.tex date: December 3, 2013
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- 2/00@0 = Fo)(y)d(pg — 17 (),

n

since Fy(e,) = Fo(en). Note also that feo: Fo(y)dpg(y) < f;: dpg(y) = g(en) <
oco. Similar arguments may be used to prove finiteness of all terms in the above
expression. Since Fy satisfies (M), the right hand side is greater than or equal
to zero. Finally, we rearrange to obtain that

JS(g = fo)2dz > [(fo — fo)2da.

n

The result is proved by letting ¢, — 0.

(3). This follows from the argument in (2), since h is increasing and therefore
V—wp(fo) = 0. R

(4). Let a = sup,~g |Fo(z) — Go(x)|. Then, by definition, Fy(x) + a > Go(z).
Also, since Go(z) + a is concave and always greater than Fy(z), we have that
Go(x) + a > Fy(x), and the result follows. O

Proof of Lemma 4.2

We note that within this section we make reference to the “bracketing entropy”,
in the sense of empirical process theory (van der Vaart and Wellner, 1996),
which is different than the entropy functional discussed in Section 4. Define
the Bernstein “norm” to be d%(f,g) = 2 [(ef=9 — 1 — |f — g|)dFy, and let
h*(f,9) =1/2 [(V/] — /9)*dz denote the square of the Hellinger distance.

Lemma 0.1. Suppose that fo/fo < 3. For ms =log((f + J?())/Qfo), we have

1. d%(mf,mfo) < 24¢2R2(f, fo),
2. dig(my,my) < 48c5h* (£, 9)-

Proof. For z > —2, we have el*l — 1 — |z < 12(e*/2 — 1)2. Since m; > —log2,
it follows
2

24/(emf/2 —1)%dF, = 24/ ,/fJZfO —1]| dR
2fo

< A8GRRA((f + fo)/2. fo) < 24cEh*(f, fo).,

applying van de Geer (2000, Lemma 4.2, page 48) in the last inequality. Now,
suppose that my — mgz > 0. Then using a similar argument, we have that
d%(mys,mgy) is bounded above by

2 2
[f+ fo \/f+fo \/g+fo fo
2 0 1| dF, = 48 - _d
/ g+ fo ’ / 2 2 g+f0x

< 96¢2h? <f+f°,g+f0> < 48¢2R3(f,g).

IN

dy(my,mg,)

2 2

imsart-generic ver. 2012/04/10 file: gren_annals-suppl.tex date: December 3, 2013
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If my —m, < 0, we use instead the bound el®l — 1 — |z < 12(el*1/2 — 1)?] and
obtain d%(mys,mg) < 48¢3h*(g, f) = 48ch*(f,g). O
Proof of Lemma 4.2. Let h3(f, fO =3 f (1 /— — 1) dFy denote the modified

Hellinger distance used in Patilea (2001). Slnce fn is the MLE, h(z) = log(x) is
convex, and logz < x — 1,

0< = / f"dIF < 1/logfntfocﬂ{?
4 f 2 2f

0 0

1 ot Jo

*/mf d(Fn—Fo)—/ 1-— f th dFQ,

2 " 2fo

where my = log (f +Jo ) . Now, from Patilea (2001, Lemma 2.2, (2.2)), we have

i (1 —1/f;ff°> dFy > 0. Hence
0

1 fu
0 < f/logJ;dIFn < /mf d(F, — Fp),
2 fo "

and therefore to prove the lemma it is sufficient to prove that the term on
the right hand side is also of order O,(n~2/3). To this end, define G, (m;) =

\/ﬁfmf(x)d(Fn_FO)a and ||G,|[» = Suppen |G (h)], and let Ms k= {mf7 ho(f, fo) <
0, f € Fi}, with Fi denoting the class of positive decreasing functions with
bounded support and bounded above by K.

Now, by Markov’s inequality

P(n'*Gy(my,) > 57)
< P 1/2@( 7.) > 02,mz € Ms, k) + P(ho(fa, fo) > 6n)
+P(fu ¢ Fi)

+ P(ho(fn, fo) > 60) + P(Fn ¢ Fic)- (S-1)

IN

E [||Gnl|Ms, . ]

= nl/252

To finish the proof we will use the results of Patilea (2001) and empirical process
theory as in Gao and Wellner (2009).

To obtain the appropriate bracketing entropy bounds on E[||G, || a5, ], we will
use van der Vaart and Wellner (1996, Lemma 3.4.3, page 324) (we can do this
by the first inequality in Lemma 0.1 from which it follows that if ho(ﬁl, ﬁ)) <9
then dB(fn, ]?0) < 56). Next, the results of Lemma 0.1 further show that an Lo
bracket [/f,/g] of densities of size § leads to a bracket [ms,mgy] of Bernstein
norm size a multiple of d. Therefore, the bracketing integral of M; x under

the Bernstein norm can be bounded by the bracketing integral of M; g, where
M i is equal to

{f, f decreasing with f(0+) < K and support on [0, A] and ||f]|]2 < §},

imsart-generic ver. 2012/04/10 file: gren_annals-suppl.tex date: December 3, 2013
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under the Ly norm ||f|]3 = [ f?(z)dz. By Gao and Wellner (2009, Theorem 4),
we have that the bracketing integral J;j(5, Ms,|| - ||2) < C(log K)Y/45/2, for
some constant C' and we assume without loss of generality that A = 1. Applying
van der Vaart and Wellner (1996, Lemma 3.4.3, page 324) it follows that

a/n

We now choose d,, = Mn~/3 for M > 1 and plug this into (S-1). We obtain

1/2
E[|Gullams, ] < C(logK)Y4sL/2 <1 + (logK)1/45”> .

P(n™'?G,(mg ) > Mn™2/?)

(log K)/* (log K)/*
< O (1 (S-2)

+ P(ho(fa, fo) > Mn™Y3) + P(f,(0+) > K).

Now, by definition

- F,(t) Fn(t) Fo(t)
n(0+) = sup——= = su LA
Ja(04) f,zg t t>18 Fo(t) t >0t >0 Fo(t)

and the term sup, o F,,(¢)/Fo(t) = Op(1) (Shorack and Wellner, 1986, Theorem
Fo(t)
i

Therefore, limg o0 limsup,, .. P(f,(0+) > K) = 0, and we can choose K =
M, say. Using Patilea (2001, Corollary 5.6 with ¢ = 1 and « = 0) to handle the

middle term, we obtain

2, page 345), while sup, g = fo(0+) which is bounded by assumption.

im limsup P(nfl/QGn(mﬁ) > Mn~%/%) =0,

|
M—o0o pnosoo

as required. O

On the conditions of Theorem 4.1

We conclude this section by commenting on how the conditions of Theorem 4.1
could be relaxed. The conditions that (A) fo/fo < oo and (B) fy has bounded
support are necessary in our method of proof. However, one could relax the
condition that fj is bounded above and replace it with both

(C) for some € € (0,1), [, fedFy(z) < oo, and
D) limsup, P(sup,~Fn(t)/t > K,) =0, for K,, = n1/253/2 and 4,, = n® for
( n t>0

a€ (—1/3,-1/4).

The key inequality in (S-2) provides a bound made of up of three terms. The
second of these is handled by Patilea (2001, Corollary 5.6), and this continues to
hold if (A), (B), and (C) are true. We then have to pick K = K, such that both
the first and third terms go to zero, which is exactly condition (D). Condition

imsart-generic ver. 2012/04/10 file: gren_annals-suppl.tex date: December 3, 2013
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(C) is discussed in Patilea (2001). Some ideas on how to achieve (D) can be
gained from the results in Balabdaoui et al. (2011). Note that this approach
will change the result of Lemma 4.2 to [log(fn/fo)dF, = o(n~'/2), which is
still sufficient for Theorem 4.1.

On the conditions of Theorem 3.1

The aim of our work has been to examine misspecification in the Grenander
estimator. We therefore focus here on the conditions required for the flat part
of the KL projection, namely, (P), and (F). It is not at all clear how to remove
condition (P) based on our method of proof. We briefly sketch below some
ideas on how one could weaken condition (F) on Sy. Based on our general
approach, relaxing these conditions would involve additional assumptions again,
as discussed below. Future directions for research would involve developing new
methodology, so that potentially weaker assumptions could be obtained.

The key lies in generalizing the results so that J = oo is possible in the decom-
position (3.1), and reproving tightness of [ [S,(z)|*dz under these conditions.
Let §; = b; — a;. Then, (6.6) may be replaced with

P ([ [Su(@)|ode > M) <37 P (f(aj,bj] S (2)[*da > Maj) .

To provide the required bounds here, there are two key steps:

1. For each term in the sum above, we first work on the integrand from
a; + ¢o/n to bj, and apply the calculations from (6.9). We find an upper

bound of
atl c—o/2
Co==9;
M
Thus we would need to assume that Z}]=1 5;0’/ ? < 0.
2. Secondly, we would require that
sup sup a7 fu (@)~ fo@)|* = 0,(1).  (S3)

J xz€laj,a;+co/n)

Now, repeating the arguments in Balabdaoui et al. (2011) (see also Woodroofe
and Sun (1993)), one has that

sw_fale) = Rl = ) (7~ 1),

z€laj,a;+Co/mn) Uj

where Uj is a uniform random variable. Moreover, it is not difficult to see
that these variables are independent across j. In order to show that (S-3)

holds, one would require at least that sup; fo(aj)(Uj_l — 1) is finite a.s..
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To see that the latter holds, note that
_ Folay)
P (sup f§(a; U.1—1°‘>M> = 1—” 11— =
( P fg'(a) (U~ 1) : fola;) + MY/

1 —exp {Zj folay) } )

M1/«

IN

since 1 —z > e~%/(=%)_for 2 < 1. Assuming then that > fo(aj) < 00,
yields that sup; fo(aj)(Ufl — 1) is finite a.s..
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