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Abstract. In this paper we study the nonparametric MLE and LSE of a convex

hazard function. Our estimators are shown to be consistent and to converge at

rate n
2/5. Moreover we establish the pointwise asymptotic distribution theory of

both estimators under the assumption that the true hazard function is positive

with positive second derivative at the fixed point. The same problems for a convex

hazard function under right censoring and for the Poisson process with a convex

rate are also considered briefly.

1. Introduction

Information on the behavior of time to a random event is of much interest in
many fields. The random event could be failure of a material or machine, death, an
earthquake, or infection by a disease, to name but a few examples. Frequently, this
type of data is called lifetime data, and it is natural to assume that it takes values
in [0,∞). If the lifetime distribution F , has a density f , then a key quantity of
interest is the hazard (or failure) rate h(t) = f(t)/(1 − F (t)). Heuristically, h(t)dt
is the probability that, given survival until time t, the event will occur in the next
dt amount of time. The hazard function is also known as the force of mortality in
actuarial science, or the intensity function in extreme value theory.

There are many parametric families which receive attention in lifetime analysis,
the exponential (with a constant hazard rate) being arguably the best known and
most thoroughly studied. However, in practice it is often not desirable to assume a
particular parametric model. On the other hand, certain shape restrictions arise quite
naturally in this context. In this work, we are particularly interested in the family of
hazard functions which are bathtub or U -shaped. That is, there exists a t0 ∈ [0,∞],
such that h is decreasing for 0 < t < t0 and h is increasing for t0 < t < ∞. Some
authors, e.g. Lai, Xie and Murthy (2001), insist that a bathtub shaped hazard be
strictly increasing or decreasing for all t, and hence rule out intervals of constant
h. Other authors, e.g. Savits (2003) and Marshall and Olkin (2007), pages 120-133,
permit intervals of constancy. The literatures of reliability theory and demography
contain extensive discussion of the general notion of bathtub shaped hazard functions:
see e.g. Singpurwalla (2006), pages 72 - 74, and the review articles of Lai, Xie and
Murthy (2001) and Rajarshi and Rajarshi (1988).
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Heuristically, bathtub shaped hazards correspond to lifetime distributions with high
initial hazard (or infant mortality), lower and often rather constant hazard during the
middle of life, and then increasing hazard of failure (or wear out) as aging proceeds.
The observed failure rate is then a mixture of these three types of failure, as seen in
Figure 1(a).
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Figure 1. (a). Example when the observed failure (bold) is a mixture
of the infant mortality (short-dashed), constant, and wear-out (long-
dashed) failure rates. (b). Example of a non-convex failure rate.

Accurate information on the failure rate is of vital importance to practitioners. A
reliability engineer can delay the release of a product to the public until it has survived
through the infant mortality phase (this practice is known as “burn-in”; see e.g. Lynn
and Singpurwalla (1997)). On the other hand, the hazard rate of significant seismic
events (within a window of time) can be used to determine when an earthquake alert
needs to be issued (cf. Ellis (1985); La Rocca (2008)).

Our focus here is on nonparametric estimation of the subclass of bathtub shaped
hazard functions which are also convex. Although there clearly exist many bathtub
shaped hazards functions which are not convex (see e.g. Figure 1(b)), many of the
frequently proposed parametric families of bathtub hazard functions are also con-
vex. We feel that the additional assumption of convexity of the hazard function is
frequently natural and appealing, and it is one way of ensuring that the resulting
hazard function is continuous, a condition which is often not satisfied by nonpara-
metric approaches (see the following discussion). We know of no previous attempt to
study nonparametric estimation of a convex hazard function with unknown point of
minimum or “antimode” as we will call it throughout the rest of this paper.

The nonparametric maximum likelihood estimator (NPMLE) of an increasing haz-
ard function was first derived by Grenander (1956). The estimator may be found
explictily via the following “graphical” representation. Define the function A(j) =∫ X(j)

0
Sn(s)ds for j = 1, . . . , n, where X(j) are the observed order statistics and Sn(x)

is the empirical survival function. Then the MLE is the reciprocal of the derivative
of the least concave majorant of A (see e.g. Robertson, Wright and Dykstra (1988),
page 342). In particular, the MLE in this setting is a piecewise constant function
(and not smooth).
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Consistency of the MLE was established by Marshall and Proschan (1965). Asymp-
totic distribution theory of the the MLE at a fixed point was treated by Prakasa Rao
(1970), where it is shown that the estimator converges at rate n1/3. This is anal-
ogous to similar results obtained for monotone density estimators, which are well
known to converge more slowly than the

√
n-rate typical of regular parametric mod-

els. These developments were extended to incorporate censoring by Mykytyn and
Santner (1981); see also Huang and Zhang (1994) and Huang and Wellner (1995).

Estimation of the hazard rate with decreasing rate is analogous to that of an in-
creasing rate, as is the estimation of a bathtub failure rate with known antimode. The
first consideration of bathtub hazards with no information on the antimode appears
in Bray, Crawford and Proschan (1967a,b). These authors derived nonparametric
maximum likelihood estimators in the class of all bathtub shaped (or inverted bath-
tub shaped) hazards, without the additional restriction of convexity, and this was
extended to incorporate right censoring in a brief treatment by Mykytyn and Sant-
ner (1981). Although the NPMLE here has no explicit formula, it may be found
exactly via a simple search algorithm, and is again a piecewise constant function. In
both cases, the estimator is shown to be consistent, but further asymptotics are not
considered. However, we believe that these will also converge at the n1/3 rate typi-
cal to MLEs under monotonicity constraints. Banerjee (2007) establishes pointwise
confidence intervals for nonparametric estimators of monotone or U-shaped hazard
functions. The technique used to do this is based on the likelihood ratio methods in-
troduced in a related problem by Banerjee and Wellner (2001, 2005). Reboul (2005)
adapted the methods for unimodal density estimation of Birgé (1997) to the situation
of hazard estimation under shape constraints.

There is also an extensive literature on nonparametric Bayes approaches. To our
best knowledge, the first consideration of nonparametric Bayes methods begin with
Dykstra and Laud (1981) and Padgett and Wei (1981). Essentially, the hazard rate
is written as

h(t|µ) =

∫
k(t, x)dµ(x), (1.1)

where k is a predetermined kernel function, and a prior is chosen for µ. The estimator
is then the pointwise posterior mean. A variety of kernels and priors have been
considered, and for each possible combination different computational methods are
necessary (from MCMC and MC sampling, to exact formulas in certain cases). A
nice review of this material appears, for instance, in the recent papers of Ho (2007)
and La Rocca (2008).

The choice of kernel in (1.1) clearly imposes shape restrictions on the estimator.
For example, k(t, x) = 1{t ≤ x} yields the class of nondecreasing hazard rates.
This formulation limits the possibilities to functions with known antimode. To our
knowledge, the only consideration of a general bathtub hazard occurs in Ho (2007),
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where

h(t|µ, θ) =

∫ [
1{t− θ ≤ u < 0} + 1{0 < u ≤ t− θ}

]
dµ(u),

and a prior is placed on both µ and θ. However, due to the choice of prior in Ho
(2007), the resulting estimates are again piecewise constant.

Let C ⊂ R+ = [0,∞) be convex. Recall that a function h : C 7→ R is convex (on
C) if it satisfies

h(λx+ (1 − λ)y) ≤ λh(x) + (1 − λ)h(y), 0 < λ < 1

for all x, y ∈ C. Equivalently, a function is convex if its epigraph

{(x, µ) : x ∈ C, µ ∈ R, µ ≥ f(x)}
is a convex set in R2 (see e.g. Rockafellar (1970), Section 4). Thus, a convex function
on C may be extended to a convex function on R+ by setting h(x) = +∞ for x ∈
R+ ∩ Cc.

We consider here two nonparametric estimators of a convex hazard function: the
maximum likelihood estimator, and the least squares estimator. The latter is found
on [0, T ] for a fixed T < ∞, by considering the closest function to the empirical
hazard function Hn in the sense that

LSE = argminh≥0 convex

{
1

2

∫ T

0

h2(t)dt−
∫ T

0

h(t)dHn(t)

}
.

To define the MLE, we first consider the likelihood expressed in terms of the hazard
rate

L(h) =

n∏

i=1

h(Xi) exp {−H(Xi)} .

This can be made arbitrarily large by increasing the value of h(X(n)). We therefore
maximize the modified likelihood

Lmod(h) =
n−1∏

i=1

h(Xi) exp {−H(Xi)} × exp
{
−H(X(n))

}
. (1.2)

and set ĥn(X(n)) to be arbitrarily large (i.e. ĥn(X(n)) = ∞) to find the MLE. That
is, the MLE on [0, X(n)) is found by maximizing Lmod(h), and it is set to +∞ for
all x ≥ X(n). This is the same approach as taken in Grenander (1956) page 142.
Equivalently, one could assume that h ≤ M (i.e. h(X(n)) = M for M sufficiently
large), and then let M → ∞ (see e.g. Robertson et al. (1988), page 338).

To illustrate our proposed estimators, consider the distribution with density given
by

f(t) =
1 + 2b

2A
√
b2 + (1 + 2b)t/A

, on 0 ≤ t ≤ A.
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This distribution was derived in Haupt and Schäbe (1997) as a relatively simple model
with bathtub-shaped hazards, which also has an adequate ability to model lifetime
behavior. For simplicity, we will call this the H-S distribution. It has bathtub shaped
hazard function h for −1/3 < b < 1, and has convex hazards for all values of b in
the parameter space (b > −1/2). In Figure 2, we present an example of the LSE and
MLE for a simulation from this distribution with a sample size of 100. For the LSE
estimator we set T to be 0.9. In general, we find that setting T too large, such as
T = X(n), often does not provide good estimates, especially if the data is sparse in
the tail.
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Figure 2. Estimation of the H-S hazard with b = 0, A = 1 for a
sample size of 100. Bold = true hazard, solid = MLE, dashed = LSE
(T = 0.9).

We also applied our estimators to the earthquake data of the Appennino Abruzzese
region of Italy (Region 923) recently considered by La Rocca (2008, 2007), who studies
Bayesian estimation methods. The data comes from the Gruppo di Lavoro CPTI
(2004) catalogue [di Lavoro MPS (2004)]. It consists of 46 inter-quake times, for
Region 923, occurring after the year 1650, and with moment magnitude greater than
5.1 (details on the justification of these criteria is available in La Rocca (2008), p.14).
Figure 3 shows the resulting estimators.
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Figure 3. Estimation of the Earthquake hazard from CPTI04 data.
Solid = MLE, dashed = LSE (T = 40).

The main results of this paper are the characterizations and asymptotic behavior
of the nonparametric MLE and LSE of a convex hazard function. Unlike most other
nonparametric estimators of a bathtub failure rate, our estimators are continuous and
piecewise linear. We also show that the estimators are consistent, and establish a local
rate of convergence of n2/5 (under certain natural assumptions). Although we give a
characterization of the MLE and LSE, the final form of the estimators is not explicit.
We therefore propose an algorithm (based on the support reduction algorithm of
Groeneboom, Jongbloed and Wellner (2007)) to find the estimators. This algorithm
is discussed in a separate report, Jankowski and Wellner (2008).

The development of our theory is an extension of the results of Groeneboom, Jong-
bloed and Wellner (2001b), who study the estimation of a convex and decreasing
density function. The general treatment is quite similar, however our setting has sev-
eral additional complications and difficulties (most of these are caused by removing
the assumption that the function in question is monotone). Since there have been
so few developments in this direction in the intervening time, we feel that it may be
helpful to give many of the details in this new case even though the general pattern
is similar.

Here is an outline of the paper: We begin with a summary of our main results.
Section 3 is dedicated to the proof of characterizations, and existence and uniqueness
of the estimators. Consistency of the two estimators is proved in Section 4. Section 5
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establishes lower bounds for the pointwise risk of any estimator in our problem. Rates
of convergence are established for the MLE and LSE in Section 6, while Section 7
gives our main results concerning the limiting distributions of the estimators at a fixed
point. In Section 8, we summarize similar results for the problem of estimating the
hazard function with censoring and for estimating a bathtub-shaped (or U-shaped)
hazard. Because of the similarity of the problem, we also give a brief treatment here
of nonparametric estimation of the intensity function of a Poisson process on [0, T ]
for some T under the assumption that it is convex. This is done in Section 9. Lastly,
in Section 10, we consider estimation of the antimode, and of the local inverses of the
hazard function.

2. Summary of Main Results

Suppose we observe X1, . . . , Xn i.i.d. from a distribution F0 with density f0 and
hazard rate h0(t). We suppose that F0 is concentrated on [0,∞); thus F0(0) = 0 and

F0(∞) = 1. We denote the true cumulative hazard function by H0(t) =
∫ t

0
h0(s)ds,

and the true survival function as S0(t). Let Fn denote the empirical distribution
function of X1, . . . , Xn, and let Hn denote the empirical hazard function: thus

Fn(t) =
1

n

n∑

i=1

1[0,t](Xi), Hn(t) =

∫

[0,t]

1

1 − Fn(s−)
dFn(s).

Also, Sn(t) = 1 − Fn(t), and we let 0 < X(1) < X(2) < · · · < X(n) denote the order
statistics corresponding to X1, . . . , Xn.

As discussed above, the MLE, ĥn on the set [0, X(n)) is found by maximizing the

modified likelihood (1.2), and setting ĥn(x) = +∞ for x ≥ X(n). Thus, we need to
minimize the criterion function

ϕn(h) =

∫ ∞

0

{
H(t) − log h(t)I(t 6= X(n))

}
dFn(t)

over the class of nonnegative convex functions on [0, X(n)). We will call this space of

functions K+. The MLE, ĥn = argminϕn(h), is described as follows.

In Proposition 3.2, we show that ĥn is piecewise linear. Therefore, it may be
expressed as

ĥn(t) = â +
k∑

j=1

ν̂j(τj − t)+ +
m∑

j=1

µ̂j(t− ηj)+, (2.1)

where ν̂j , â, µ̂j ≥ 0. We let τj denote the points of change of slope of ĥn where ĥn is

decreasing, and let ηj > 0 denote the points of change of slope where ĥn is increasing.
For simplicity we assume that these are ordered. Also, we have τk ≤ η1. As seen
in the next lemma, the τj ’s and ηj’s correspond to “points of touch” or equality of

processes defined on the one hand in terms of ĥn and the data, and on the other
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hand just in terms of the data. We therefore also refer to them as “touch points”
repeatedly in the remainder of the paper.

Lemma 2.1. Let F̃n(t) = (1/n)
∑n−1

i=1 I[0,t](X(i)). A function ĥn minimizes ϕn over
K+ (and hence is the MLE) if and only if:

∫

[0,x]

x− t

ĥn(t)
dF̃n(t) ≤ x2

2
−
∫

[0,x]

(x− t)2

2
dF̃n(t) =

∫ x

0

∫ t

0

Sn(s)dsdt, (2.2)

for all x ≥ 0 with equality at τi for i = 1, . . . , k;∫

[x,∞)

t− x

ĥn(t)
dF̃n(t) ≤

∫

[x,∞)

(t− x)2

2
dFn(t) =

∫ ∞

x

∫ ∞

t

Sn(s)dsdt, (2.3)

for all x ≥ 0 with equality at ηj for j = 1, . . . , m;∫

[0,∞)

1

ĥn(t)
dF̃n(t) ≤

∫

[0,∞)

tdFn(t) =

∫ ∞

0

Sn(t)dt, (2.4)

∫

[0,∞)

Ĥn(t)dFn(t) = 1 − 1/n. (2.5)

Moreover, the minimizer ĥn satisfies
∫ x

0

ĥn(t)Sn(t)dt = Fn(x), (2.6)

for x ∈ {τ1, . . . , τk, η1, . . . , ηm}.

Remark 2.2. Note that (2.4) implies that if ĥn is decreasing on [0, X(n−1)], then it

must be strictly positive there. Also, as we assume apriori that ĥn(X(n)) = ∞ we may
rewrite the left-hand side terms in (2.2), (2.3) and (2.4) via

∫

A

x− t

ĥn(t)
dF̃n(t) =

∫

A

x− t

ĥn(t)
I(t 6= X(n))dFn(t) =

∫

A

x− t

ĥn(t)
dFn(t)

∫

A

1

ĥn(t)
dF̃n(t) =

∫

A

1

ĥn(t)
I(t 6= X(n))dFn(t) =

∫

A

1

ĥn(t)
dFn(t),

for any set A. We will use this latter formulation from here onwards.

As in Groeneboom, Jongbloed and Wellner (2001b), a “least squares” type of esti-
mator will also play a role in our development here. One version of such an estimator
on a compact sub-interval [0, T ] with T fixed is as follows: a least squares estimator

of the convex function h0 is defined to be the convex function h̃n on [0, T ] which
minimizes

ψn(h) =
1

2

∫ T

0

h2(t)dt−
∫ T

0

h(t)dHn(t)
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over the class KT , the class of nonnegative convex functions on [0, T ]. Heuristically,

h̃n is the function which is “closest” to dHn(t): for if the latter existed (i.e. dHn(t) =
h̄n(t)dt), then

h̃n = argmin
{∫ T

0
(h− h̄n)2dt

}
.

For h̃n = argminψn(h), define H̃n(t) =
∫ t

0
h̃n(s)ds, and H̃n(t) =

∫ t

0
H̃n(s)ds. Also,

let Yn(t) =
∫ t

0
Hn(s)ds.

Lemma 2.3 (Characterization of LSE). The function h̃n minimizes ψn(h) over KT

if and only if it satisfies

H̃n(T ) = Hn(T ), (2.7)

H̃n(T ) = Yn(T ), (2.8)

H̃n(t) ≥ Yn(t) for all t ∈ [0, T ], (2.9)
∫ T

0

(H̃n − Yn)(t)d h̃′n(t) = 0. (2.10)

The last statement is the same as: H̃n(τ) = Yn(τ) for all changes of slope τ of h̃n.

Notice that the function H̃n(t) − Yn(t) is nonnegative for all t ∈ [0, T ], and it is

minimized at the points where h̃n has a change of slope. Hence we have:

Corollary 2.4. H̃n(τ) = Hn(τ) for all changes of slope τ of h̃n.

Remark 2.5 (Notation). For any function h, we write H(t) =
∫ t

0
h(s)ds, and H(t) =∫ t

0
H(s)ds.

The above lemma shows that the LSE is given by the second derivative of a func-
tional of the process Yn. This functional (a.k.a. the “invelope”, a term coined in
Groeneboom et al. (2001a)) is a cubic spline, which sits above the process Yn. This
is in direct analogy to the Grenander estimator of a non-increasing density, which is
the first derivative of the least concave majorant of Fn. In this latter case, the MLE
and LSE may be shown to be identical, a coincidence which does not hold for either
convex densities (as in Groeneboom et al. (2001a)) or here.

In Section 3, we prove the above characterizations. We also show that the esti-
mators are piecewise linear, and, most importantly, that they exist and are unique.
In Section 4, we show that the estimators are consistent: see Theorems 4.1 and 4.4
for the exact statements of consistency. Asymptotic minimax risk lower bounds are
obtained in Section 5.

The main results of our paper concern the asymptotic behavior of these estimators
at a fixed point x0. To describe these results we introduce several processes from
Groeneboom et al. (2001a).
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Definition 2.6. Let W (s) denote a standard two-sided Brownian motion, with W (0) =

0, and define Y (t) =
∫ t

0
W (s)ds + t4. The function {I(t) : t ∈ R}, the invelope of

the process {Y (t) : t ∈ R}, is defined as follows:

• The function I is above the function Y : I(t) ≥ Y (t) for all t ∈ R. (2.11)

• The function I has a convex second derivative. (2.12)

• The function I satisfies
∫

R
{I(t) − Y (t)}dI(3)(t) = 0. (2.13)

It was shown in Groeneboom et al. (2001a) that the process I exists and is almost
surely uniquely defined. Moreover, with probability one, I is three times differentiable
at t = 0.

The asymptotic behavior of all of our estimators may be described in terms of the
derivatives of the invelope I at zero. Notably, both the MLE and LSE have the same
asymptotic behavior.

Theorem 2.7. Suppose that h0 is convex and that x0 > 0 is a point which satisfies
0 < h0(x0) < ∞, h′′0(x0) > 0, and that h

′′

0(·) is continuous in a neighborhood of x0

(also, x0 < T for the LSE). Then the nonparametric maximum likelihood estimator
and least squares estimator are asymptotically equivalent in the following sense: if

h̄n = ĥn or h̃n, then
(
n2/5(h̄n(x0) − h0(x0))
n1/5(h̄′n(x0) − h′0(x0))

)
→d

(
c1 I(2)(0)
c2 I(3)(0)

)

where I(2)(0) and I(3)(0) are the second and third derivatives at 0 of the invelope of

Y (t) ≡
∫ t

0
W (s)ds+ t4, and where

c1 =

(
h2

0(x0)h
′′
0(x0)

24S2
0(x0)

)1/5

, c2 =

(
h0(x0)h

′′
0(x0)

3

243S0(x0)

)1/5

.

This result is proved in Section 7, using the rate of convergence results of Section
6.

A natural next question is to consider the asymptotic behavior at a point if the
true hazard function violates the assumptions described above. We conjecture that if
h0(x0) = 0 while h′′0 is continuous and strictly positive then a faster rate of convergence
than n2/5 will be achieved. On the other hand, if h′′0(x) = 0 at x0, then we believe that
the convergence rate n1/2 will hold, although these are still open problems. Indeed,
at this time, we have no intuition as to the convergence rate if h′0 is discontinuous at
x0, although unpublished work of Cai and Low (2007) suggests that the rate is n1/3

at such points.

3. Characterizations, Uniqueness and Existence of the Estimators

Because the MLE is somewhat more difficult than the LSE in terms of its charac-
terization, we first prove existence and uniqueness of the LSE and provide a proof of
the characterization given in Lemma 2.3. We then do the same for the MLE.



MLE & LSE OF BATHTUB HAZARD 11

3.1. LSE.

Proposition 3.1 (Existence and Uniqueness of LSE). Suppose that Hn(T ) < ∞.
Then the minimizer of ψn over the set KT exists and is unique.

Moreover, the minimizer h̃n is piecewise linear. It has at most one change of slope
between jumps of Hn, except perhaps in one such interval, where, if the estimator
touches zero, it may have two changes of slope (and it is zero between these two
changes). Also, between zero and the first jump of Hn, the minimizer may have at
most one change of slope, but this happens only if it touches zero, and in this case
the estimator is increasing and equal to zero before the first slope change. The same
is true for the interval from the last change of slope of Hn to T , except here if the
estimator changes slope, it is decreasing, and it is zero after the change.

Proof. The linearity of the minimizer is straightforward. Let {X(i)}N
i=1 denote the

ordered points of jump of Hn such that X(N) ≤ T ; here N is defined so that X(N) ≤
T < X(N+1). Fix any h ∈ K, and consider any g ∈ K smaller than h, such that
g(X(i)) = h(X(i)) for all i = 1, . . . , N . For such an g we have that ψn(h) ≥ ψn(g) if
and only if

∫
h2dt ≥

∫
g2dt. Thus, we will select g so that this term is minimized.

Clearly this will be accomplished if we select g to be the smallest possible g, with
h ≥ g ≥ 0. With this in mind, it is not difficult to see that such a g (and hence
the minimizer of ψn) must satisfy the properties described in the second paragraph
of the proposition. (For example, suppose that h is differentiable. Then, we choose g
to satisfy g′(Xi) = h′(Xi) for i = 1, . . . , N .)

We will next show that the minimizer of ψn(h) over K must lie in the compact set

{h : h ∈ K, 0 ≤ h ≤ B}

for some constant B. Since the function ψn is strictly convex on K it will follow that
there exists a unique minimizer.

Next, note that for any two functions h and g, we obtain, using integration by
parts,

ψn(h) − ψn(g) =
1

2

∫ T

0

(h(t) − g(t))2dt

+ [h− g](T )(G− Hn)(T ) − [h− g]′(T )(G − Yn)(T )

+

∫ T

0

(G − Yn)(s)d[h− g]′(s). (3.1)

From this we see that if g satisfies

(1) (G− Hn)(T ) = 0,
(2) (G − Yn)(T ) = 0,
(3) (G − Yn)(t) ≥ 0 for all t, and

(4)
∫ T

0
(G − Yn)(s)d g′(s) = 0,
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then we must necessarily have that ψn(h) − ψn(g) ≥ 0, for any h ∈ K. Thus we may
restrict our search for the minimizer of ψn over K to the functions which satisfy the
above conditions. In particular, this implies that if a function h is a candidate to be
the minimizer it must be that H(T ) = Hn(T ).

Next, consider an h such that H(T ) = Hn(T ). Note that we may write h = h++h−,
where h+ is increasing and h− is decreasing. It follows that for all x

Hn(T ) ≥
∫ x

0
h−(t)dt ≥ h−(x)x

Hn(T ) ≥
∫ T

x
h+(t)dt ≥ h+(x)(T − x).

(3.2)

Hence,

h(x) ≤ Hn(T )

{
1

x
+

1

T − x

}
. (3.3)

Because of convexity of h it follows that h must be bounded on the set (X(1), X(N)),
and it remains to argue the same for [0, X(1)] and [X(N), T ].

Consider the set [0, X(1)]. Clearly if h′(X(1)) ≥ 0 then we are done. Assume then
that h′(X(1)) < 0. For 0 ≤ t ≤ X(1), let g(t) = h(X(1)) + h′(X(1))(t − X(1)). To
simplify notation we denote h1 = h(X(1)) and h2 = h′(X(1)), and X(1) = x. It follows
from (3.3) that

ψn(h) ≥ 1

2

∫ x

0

(h1 + h2(t− x))2dt− h1 −D,

where D =
∑n

k=2 2Hn(T )/min{X(k), T −X(k)}. The right side of the display is equal
to

1

2
h2

1x− h1h2
x2

2
+ h2

2

x3

6
− h1 −D.

By using the inequality at2 − bt ≥ −b2/(4a) for a > 0, b ∈ R, with the choices t = h2,
a = x3/6, b = h1x

2/2, it follows that

ψn(h) ≥ 1

8
h2

1 − h1 −D.

Similarly by the same inequality with t = h1, b = x/2, and b = 1 + x2h2/2, we find
that

ψn(h) ≥ x3

24
h2

2 −
x

2
h2 −D − 1

2x
.

These two inequalities imply that both |h1| and |h2| must be finite, if h is to minimize
ψn(h). This in turn implies that such an h must be finite on [0, X(1)]. The argument
may be repeated for [X(N), T ]. Hence we have shown that the minimizer of ψn(h)
over K must lie in the set {h : h ∈ K, 0 ≤ h ≤ B} for some constant B, as required.

�
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Proof of Lemma 2.3. We first show that conditions (2.7)-(2.10) are sufficient. For h̃n

to be the minimizer we must show that

ψn(h) − ψn(h̃n) ≥ 0,

for any h. By (3.1), ψn(h) − ψn(h̃n) is bounded below by

(h− h̃n)(T )(H̃n − Hn)(T ) − (h− h̃n)′(T )(H̃n − Yn)(T )

+

∫ T

0

(H̃n − Yn)(s)d(h− h̃n)′(s).

From conditions (2.7), (2.8) and (2.10) this is equal to
∫ T

0

(H̃n − Yn)(s)dh′(s).

However, since h is convex, it follows from condition (2.9) that this is non-negative,
as required. We next show that the conditions are necessary.

Assume then that h̃n minimizes ψn. Setting h = h̃n + ǫγ, we obtain that

∂γψn(h̃n) ≡ lim
ǫ→0

ψn(h̃n + ǫγ) − ψn(h̃n)

ǫ

= γ(T )(H̃n − Hn)(T ) − γ′(T )(H̃n − Yn)(T )

+

∫ T

0

(H̃n − Yn)(s)dγ′(s). (3.4)

If h̃n + ǫγ is in KT for sufficiently small ǫ then ∂γψn(h̃n) ≥ 0. If, however, h̃n ± ǫγ is

in KT for sufficiently small ǫ then, ∂γψn(h̃n) ≥ 0 and −∂γψn(h̃n) = ∂−γψn(h̃n) ≥ 0,

implying ∂γψn(h̃n) = 0.
Choosing, respectively, γ(t) ≡ 1, t, (t− y)+, (y − t)+ and plugging these into (3.4)

gives

(H̃n − Hn)(T ) ≥ 0 (3.5)

T (H̃n − Hn)(T ) − (H̃n − Yn)(T ) ≥ 0 (3.6)

(T − y)(H̃n − Hn)(T ) −
∫ T

y

(H̃n − Hn)(t)dt ≥ 0 (3.7)

(H̃n − Yn)(y) ≥ 0, (3.8)

for any y ∈ [0, T ]. The last statement is, of course, condition (2.9) of the characteri-
zation.

Consider the form of the function h̃n. This may be written as

h̃n(t) = ã +

k∑

j=1

ν̃j(τj − t)+ +

m∑

j=1

µ̃j(t− ηj)+,
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where ν̃j , ã, µ̃j ≥ 0. We let τj denote the changes of slope where h̃n is decreasing, and

ηj > 0 denote the changes of slope where h̃n is increasing. For simplicity we assume
that these are ordered. Also, we have τk ≤ η1.

Choose γ(t) = h̃n, (τj − t)+, (t− ηj)+. For any such γ, if ǫ is small enough h̃n ± ǫγ
is in KT . It thus follows that

0 = h̃n(T )(H̃n − Hn)(T ) − h̃′n(T )(H̃n − Yn)(T ) +

∫ T

0

(H̃n − Yn)(s)d h̃′n(s), (3.9)

as well as

(H̃n − Yn)(τi) = 0 (3.10)

(H̃n − Hn)(τi) = 0 (3.11)

(H̃n − Yn)(ηj) = (H̃n − Yn)(T ) − (T − ηj)(H̃n − Hn)(T ) (3.12)

(H̃n − Hn)(ηj) = (H̃n − Hn)(T ). (3.13)

We have used the same argument as in Corollary 2.4 to obtain the second and fourth
equalities from (3.10), (3.8) and (3.12), (3.7) respectively.

Our next goal will be to show (2.7). In the characterization, two possibilities exist:

either ã > 0 or ã = 0. In the former case, we know that h̃n(t) ± ǫγ(t) is in KT for ǫ

small enough and γ ≡ 1, and hence ∂γψn(h̃n) = 0, implies condition (2.7).

Assume then that ã = 0. This implies that H̃n(η1) = H̃n(τk). From (3.8), we know

that (H̃n − Yn)(η1) ≥ 0, and (3.10), (3.11) imply that

(H̃n − Yn)(η1) =

∫ η1

τk

(H̃n − Hn)(s)ds

= Hn(τk)(η1 − τk) −
∫ η1

τk

Hn(s)ds ≤ 0.

It thus follows that

(H̃n − Yn)(η1) = 0. (3.14)

In particular, there must be no observations between τk and η1 in this setting.
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We now calculate, using (3.9),

0 = h̃n(T )(H̃n − Hn)(T ) − h̃′n(T )(H̃n − Yn)(T ) +

∫ T

0

(H̃n − Yn)(s)dh̃′n(s)

(3.14)
= h̃n(T )(H̃n − Hn)(T ) − h̃′n(T )(H̃n − Yn)(T ) +

∫ T

η1

(H̃n − Yn)(s)dh̃′n(s)

(3.12)
= h̃n(T )(H̃n − Hn)(T ) − h̃′n(T )(H̃n − Yn)(T )

+

∫ T

η1

[(H̃n − Yn)(T ) − (T − s)(H̃n − Hn)(T )]dh̃′n(s)

= h̃′n(η1)
[
T (H̃ − Hn)(T ) − (H̃n − Yn)(T )

]
+ h̃n(η1)(H̃ − Hn)(T )

≥ h̃′n(η1)
[
T (H̃ − Hn)(T ) − (H̃n − Yn)(T )

]
≥ 0,

by (3.5), (3.6), and the definition of η1.

If h̃′n(η1) > 0 where h̃′n denotes the right derivative of h̃n, it follows that

T (H̃ − Hn)(T ) − (H̃n − Yn)(T ) = 0.

Now, from (3.12) and (3.14) it follows that

0 = (T − η1)(H̃n − Hn)(T ) −
∫ T

η1

(H̃n − Hn)(s)ds = −η1(H̃n − Hn)(T ).

We thus obtain condition (2.7), for h̃′n(η1) > 0.

If h̃′n(η1) = 0, then h̃n must be purely decreasing and also h̃n(t) = 0 for t ∈ [τk, T ].
This implies that

(H̃n − Hn)(T ) = H̃n(τk) − Hn(T )
(3.11)
= Hn(τk) − Hn(T ) ≤ 0.

Condition (2.7) now follows from (3.5). Note that again this implies that there must
be no observations in the interval [τk, T ].

We have thus obtained (2.7). Plugging it into (3.6) and using (3.8) implies condition
(2.8). Lastly, using conditions (2.7) and (2.8) in (3.12), implies that

(H̃n − Yn)(ηj) = 0.

Together with (3.10) this yields condition (2.10).
�

3.2. MLE. In this section, we show that the MLE of the hazard function exists, and
is unique. We also prove the characterization of the MLE given in Lemma 2.1.
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Proposition 3.2. The function ĥn which minimizes ϕn over K+ is piecewise linear.
It has at most one change of slope between jumps of Hn, except perhaps in one such
interval, where, if the estimator touches zero, it may have two changes of slope (it
is zero between these two changes). Also, between zero and the first jump of Hn, the
minimizer may have at most one change of slope, but this happens only if it touches
zero, and in this case the estimator is increasing, and equal to zero before the first
change of slope. Between X(n−1) and X(n), the minimizer will also have at most one
change of slope, and this only in the case if it is decreasing on [X(n−1), X(n)), and
equal to zero after the change.

Proof. Consider any convex function h, and choose a g such that h(Xi) = g(Xi) for
i = 1, . . . , n − 1, and h ≥ g ≥ 0. It follows that ϕn(h) − ϕn(g) ≥ 0 if and only
if H(Xi) ≥ G(Xi) for i = 1, . . . , n. Hence, the smaller we make g on [0, X(n)), the
smaller ϕn(g) will become. The specific linear form of g now follows by arguing as in
the proof of Proposition 3.1 for the LSE. �

We shall next provide a proof of the characterization of the MLE. Before we do
this though, we provide a useful corollary of Lemma 2.1.

Corollary 3.3. Let {τi}k
i=1 and {ηj}m

j=1 denote the change points of ĥn as in (2.1).
It follows that

∫ τi

0

1

ĥn(t)
dFn(t) =

∫ τi

0

Sn(u)du, (3.15)

∫ ∞

ηj

1

ĥn(t)
dFn(t) =

∫ ∞

ηj

Sn(u)du, (3.16)

for i = 1, . . . , k and j = 1, . . . , m.

Proof of Corollary 3.3. The function

φ(x) ≡
∫ x

0

x− t

ĥn(t)
dFn(t) −

∫ x

0

∫ t

0

Sn(s)dsdt

is maximized at τi, for i = 1, . . . , k. Since it is also differentiable, (3.15) follows. A
similar argument proves (3.16). �

Proof of Lemma 2.1. Consider any nonnegative convex function h. It follows that
there exists a nonnegative constant a, and nonnegative measures ν and µ (indeed,
these measures have supports with intersection containing at most one point), such
that

h(t) = a+

∫ ∞

0

(x− t)+dν(x) +

∫ ∞

0

(t− x)+dµ(x).
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For any function ĥ in K we calculate

ϕn(h) − ϕn(ĥ) ≥
∫ ∞

0

{
H(t) − Ĥ(t) +

(
1 − h(t)

ĥ(t)

)
I(t 6= X(n))

}
dFn(t)

since − log x ≥ 1−x. Plugging in the explicit form of h from above, we find that the
right hand side is equal to

a

{∫

[0,∞)

(
t− 1

ĥ(t)
I(t 6= X(n))

)
dFn(t)

}
+

{
n− 1

n
−
∫ ∞

0

Ĥ(t)dFn(t)

}

+

∫ ∞

0

{∫ x

0

∫ t

0

Sn(s)dsdt−
∫ x

0

x− t

ĥ(t)
I(t 6= X(n))dFn(t)

}
dν(x)

+

∫ ∞

0

{∫ ∞

x

∫ ∞

t

Sn(s)dsdt−
∫ x

0

t− x

ĥ(t)
I(t 6= X(n))dFn(t)

}
dµ(x).

This is nonnegative if ĥ is a function which satisfies conditions (2.2)-(2.5). It follows
that these conditions are sufficient to describe a minimizer of ϕn.

We next show that these conditions are necessary. To do this, we first define the
directional derivative

∂γϕn(h) ≡ lim
ǫ→0

ϕn(h+ ǫγ) − ϕn(h)

ǫ
=

∫ ∞

0

{
Γ(t) − γ(t)

h(t)
I(t 6= X(n))

}
dFn(t).

(3.17)

If ĥn minimizes ϕn, then for any γ such that ĥn + ǫγ is in K+ for sufficiently small

ǫ we must have ∂γϕn(ĥn) ≥ 0. If, however, ĥn ± ǫγ is in K+ for sufficiently small ǫ

then, ∂γϕn(ĥn) = 0.

Choosing, respectively, γ(t) ≡ 1, (t − y)+, (y − t)+ then ĥn + ǫγ is in K+, and we

obtain the inequalities in conditions (2.2)-(2.4). Since (1 ± ǫ)ĥn is also in K+, for
sufficiently small ǫ, we obtain (2.5). Choosing, γ = (τi − t)+, (t − ηj)+, yields the

equalities in (2.2) and (2.3), since each of these functions ĥn ± ǫγ is in K+.
Lastly, we prove (2.6). For any τi, define

γ(t) =

{
ĥn(t) − ĥn(τi) for t ∈ [0, τi]
0 otherwise.

Since (1 ± ǫ)γ is also in K+, it follows that ∂γϕn(ĥn) = 0 and hence

0 =

{∫ τi

0

Ĥn(t)dFn(t) − Fn(τi) + Ĥn(τi)Sn(τi)

}

+ ĥn(τi)

{∫ τi

0

1

ĥn(t)
dFn(t) −

∫ τi

0

tdFn(t) − τiSn(τi)

}
.
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Integration by parts and Corollary 3.3 yield (2.6) for x = τi. The case when x = ηj ,
is obtained in a similar manner, but using

γ(t) =

{
0 for t ∈ [0, ηj]

ĥn(t) − ĥn(ηj) otherwise.

Here, we also use (2.5). �

Corollary 3.4. Suppose that ĥn is strictly positive, and recall the formulation given
in (2.1). Then we also have that

∫ η1

0

η1 − t

ĥn(t)
dFn(t) =

∫ η1

0

∫ s

0

Sn(u)duds, (3.18)

∫ ∞

τk

t− τk

ĥn(t)
dFn(t) =

∫ ∞

τk

∫ ∞

t

Sn(s)dsdt, (3.19)

∫ η1

0

1

ĥn(t)
dFn(t) =

∫ η1

0

Sn(u)du, (3.20)

∫ ∞

τk

1

ĥn(t)
dFn(t) =

∫ ∞

τk

Sn(u)du. (3.21)

Proof. The first two equalities follow by noting that if ĥn is strictly positive, then for

ǫ sufficiently small, ĥn ± ǫγ is in K+ for γ(t) = (t − τk)+, (η1 − t)+. Arguing as for
Corollary 3.3 proves the remaining lines. �

This corollary allows us to extend the equalities of the characterization of the MLE
to some extra change points. The significance of this will become clear in Sections 6
and 7, where we consider asymptotics of the estimator.

Proposition 3.5. There exists a unique minimizer ĥn of ϕn over K+.

Proof. We will show that a minimizer exists by reducing the search to bounded posi-
tive convex functions on a compact domain. As this is a compact set, a minimizer of
ϕn exists. However, since ϕn is not strictly convex, we will later need to argue that
the minimizer is unique.

We must first handle the issue of a compact domain: As we assume apriori that

ĥn(X(n)) = ∞, then we are really looking for the minimizer of the the modified
negative of the loglikelihood with domain [0, X(n)). However, we have also argued
that the minimizer must have the specific functional form as described in Proposition
3.2. Therefore, it is sufficient to reduce the domain to [0, X(n−1) + δ], for any δ > 0,

since ĥn is then extended linearly beyond X(n−1) + δ in a unique manner. Therefore,
it will be sufficient to show that we may reduce the search to functions bounded on
[0, X(n−1)], with a derivative at X(n−1) which is bounded above.
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Recall that the minimizer must satisfy
∫ ∞

0

H(t)dFn(t) = 1 − 1/n, (3.22)

and we may hence reduce our search to the class of functions which satisfies this
condition. For any such h, write h = h+ + h−, where h+ is increasing and h− is
decreasing. It follows that for any x

1 ≥
∫ ∞

0

H(t)dFn(t) =

∫ ∞

0

h(t)Sn(t)dt ≥ h−(x)

∫ x

0

Sn(t)dt.

A similar bound for h+ yields

h(x) ≤ 1∫ x

0
Sn(t)dt

+
1∫∞

x
Sn(t)dt

≡Mn(x)

for all x in (0, X(n)). Thus we know that h(x) must be bounded for x ∈ (0, X(n−1)].
To show that h is also bounded at zero, we need to show that h′(X(1)) is bounded

from below. Assuming that it is negative, we may write for 0 < x ≤ X(1)

h(X(1)) + h′(X(1))(x−X(1)) = h(x) ≤Mn(x).

Thus, fix x∗ > 0 and less than X(1); we obtain that

h′(X(1)) ≥
Mn(x∗) − h(X(1))

x∗ −X(1)

,

from which it follows that h must be bounded on the set (0, X(n−1)].
By (2.5), we also have that

n ≥ H(X(n)) ≥
∫ X(n−1)+δ

X(n−1)

h(t)dt =

∫ X(n−1)+δ

X(n−1)

{
h(X(n−1)) + h′(X(n−1))(t−X(n−1))

}
dt,

if h is increasing on [X(n−1), X(n)). This implies that h′(X(n−1)) is bounded above,
completing the proof.

We now show uniqueness. Suppose that h1 and h2 both minimize ϕn. It follows from
the arguments above that they must be piecewise linear, with at most one change of
slope between successive order statistics X(i) (with at most one exceptional interval).
Also, we have shown that

∫∞

0
H1(t)dFn(t) =

∫∞

0
H2(t)dFn(t). Therefore ϕn(h1) and

ϕn(h2) differ only in the term −
∫∞

0
log hi(t)I(t 6= X(n))dFn(t). However, this term is

strictly convex, and it follows that h1(X(i)) = h2(X(i)) for all i = 1, . . . , n− 1.
Let h̄ = (h1 + h2)/2. By linearity, we have that ϕn(h1) = ϕ(h2) = ϕ(h̄), which

implies that h̄ is also a minimizer. However, the only way that this is possible is if h̄
also satisfies the conditions of Proposition 3.2. This implies the following:

(1) Either both h1 and h2 are increasing and h1(0) = h2(0) = 0. In this case, they
must have the same locations of their changes of slope, as otherwise h̄ violates
Proposition 3.2.
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(2) Otherwise, (1) does not hold. In this case though, by the same argument as
above, if h1 and h2 have at least one change of slope in an interval between
observations (or between zero and X(1)), then these locations of change of
slope must be equal.

If the first case holds, then it is not difficult to see that h1 ≡ h2 on [0, X(n)], as
h1(t) = h1(t) = 0 on [0, τ1], and h1(Xi) = h2(Xi) for all observation points.

In the second case, we use a different argument. We know that neither h1 nor h2

have touch points before X(1). Let t∗ denote the first touch point of h1, and (without
loss of generality) assume that the first touch point of h2 is greater than t∗. Hence,
by (2.6),

h1(X(1)) = h2(X(1)),

∫ t∗

0

h1(t)dt = Fn(t∗).

Next, notice that h̄ = (h1 + h2)/2 and h2 are also minimizers of the MLE criterion
function ϕn. Notice that h̄ also has a touch point at t∗, and that h̄(X(1)) = h2(X(1)).

Now continue averaging h̄ with h2: this yields the functions

h̄l = 2−l(h1 − h2) + h2,

which satisfy

h̄l(X(1)) = h2(X(1)),
∫ t∗

0
h̄l(t)dt = Fn(t∗).

Since h̄l → h2 pointwise, it follows from the dominated convergence theorem that
∫ t∗

0

h2(t)dt = Fn(t∗).

Therefore, since h1 and h2 are both linear on [0, t∗],with

h1(X(1)) = h2(X(1)),

∫ t∗

0

h1(t)dt =

∫ t∗

0

h2(t)dt,

it follows that they both must have the same value and slope at X(1); i.e. both
h1(X(1)) = h2(X(2)) and h′1(X(1)) = h′2(X(2)) hold.

Now write

h1(t) = a1 + b1t+

m1−1∑

i=1

νi,1(t− ti,1)+,

h2(t) = a2 + b2t+
m2−1∑

i=1

νi,2(t− ti,2)+,

where X(1) < t1,j < t2,j < · · · < tmj−1,j < X(n), j = 1, 2, and where h1(X(i)) =
h2(X(i)) for i = 1, . . . , n. We also assume that νi,j > 0 for i = 1, . . . , mj − 1, j = 1, 2.
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This implies in particular that hj(t) = aj + bjt for t ≤ t1,j , j = 1, 2, and since
X(1) < t1,j, j = 1, 2,

h1(X(1)) = h2(X(1)).

Thus a1 + b1X(1) = a2 + b2X(1). From the argument above

b1 = h′1(X(1)) = h′2(X(1)) = b2.

We conclude that a1 = a2 and b1 = b2 so that h1(t) = h2(t) for 0 ≤ t ≤ t∗. It also
follows that t1,1 = t1,2.

Repeating this argument on the interval [t∗, t∗∗] with t∗∗ = min{t2,1, t2,2} shows that
ν1,1 = ν1,2 or t2,1 = t2,2. Proceeding by induction yields νj,1 = νj,2 and tj+1,1 = tj+1,2

for j = 1, . . . , m1 − 1 = m2 − 1, and hence uniqueness. �

4. Consistency

Theorem 4.1. (Consistency of the MLE ). Suppose that X1, . . . , Xn are i.i.d. random
variables with convex hazard function and corresponding distribution function F0.

Let T0 ≡ T0(F0) ≡ inf{t : F0(t) = 1}. Then the MLE ĥn(t) is consistent for all
t ∈ (0, T0). Also for all δ > 0,

sup
δ≤t≤T0−δ

|ĥn(t) − h(t)| → 0 almost surely

if T0 <∞. If T0 = ∞, the above statement holds with T0 − δ replaced by any K <∞.

Proof. We first show that ĥn is bounded appropriately so that we can select convergent
subsequences.

For any convex hazard function h we can write

h = h↓ + h↑ (4.1)

where h↓ is nonincreasing and h↑ is nondecreasing.

Now write ĥn = ĥn,↓ + ĥn,↑. Then from (2.5)

1 ≥
∫ ∞

0

ĥn(t)Sn(t)dt ≥
∫ x

0

ĥn,↓(t)Sn(t)dt ≥ ĥn,↓(x)

∫ x

0

Sn(t)dt.

This yields

ĥn,↓(x) ≤
1∫ x

0
Sn(t)dt

(4.2)

where the right side is almost surely bounded, and, in fact, converges almost surely
to 1/

∫ x

0
S0(t)dt <∞ for all x > 0.

Similarly, for x ∈ (supp(F0))
◦, and fixed δ > 0

1 ≥
∫ ∞

0

ĥn,↑(t)Sn(t)dt ≥ ĥn,↑(x)

∫ x+δ

x

Sn(t)dt.
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This yields

ĥn,↑(x) ≤
1

∫ x+δ

x
Sn(t)dt

(4.3)

where the right side is almost surely bounded for x ∈ (supp(F0))
◦, and converges

almost surely to 1/
∫ x+δ

x
S0(t)dt <∞.

Remark 4.2. Indeed, using similar arguments, one may show that if the first moment
of F0 is infinite, then h0 must be nonincreasing in the tail. If h0 is nondecreasing in
the tail, it is straightforward to show that F0 must have a finite first moment.

Now we take γ = h0 in the directional derivative, (3.17); it follows that

0 ≤ lim
ǫ↓0

ϕn(ĥn + ǫh0) − ϕn(ĥn)

ǫ
=

∫ ∞

0

{
H0(t) −

h0(t)

ĥn(t)

}
dFn(t),

noting that ĥn(X(n)) = ∞, and hence,
∫ ∞

0

h0(t)

ĥn(t)
dFn(t) ≤

∫ ∞

0

H0(t)dFn(t) →a.s.

∫ ∞

0

H0(t)dF0(t) = 1.

Fix any 0 < a < b < ∞ such that a, b ∈ (supp(F0))
◦. It follows that limnX(n) > b

with probability one (this can be shown using the Borel-Cantelli theorem). Also,
sup |Fn(t) − F0(t)| →a.s. 0 by the Glivenko-Cantelli lemma. Both of these events

occur on the set Ω, with P (Ω) = 1. Fix ω ∈ Ω. We will show that ĥn → h0 for such
an ω.

Let {n′} denote any subsequence of {n}. By the bounds in (4.2) and (4.3) (which
are finite for our choice of ω), using a classical diagonalization argument and the
continuity of convex functions, we may extract a further subsequence {n′′} such that

ĥn′′ → ĥ pointwise on [a, b], where the limit ĥ must be convex. We denote the
subsequence as {n} to simplify notation.

From Fatou’s lemma, it follows that
∫ b

a

h2
0(t)

ĥn(t)
S0(t)dt =

∫ b

a

h0(t)

ĥn(t)
f0(t)dt ≤ lim inf

n

∫ b

a

h0(t)

ĥn(t)
dFn(t)

≤ lim sup
n

∫ ∞

0

h0(t)

ĥn(t)
dFn(t) ≤ lim

n

∫ ∞

0

H0(t)dFn(t) ≤ 1.

Note that this implies that if ĥ(t) = 0 then h0(t) = 0. By (2.5) and integration by

parts, we see that 1 ≥
∫
[0,X(n))

ĥn(t)Sn(t)dt. Therefore, applying Fatou’s lemma again,

1 ≥
∫ b

a

ĥ(t)S0(t)dt.
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It also follows that,

0 ≤
∫ b

a

(ĥ(t) − h0(t))
2

ĥ(t)
S0(t)dt

=

∫ b

a

ĥ(t)S0(t)dt− 2

∫ b

a

h0(t)S0(t)dt+

∫ b

a

h2
0(t)

ĥ(t)
S0(t)dt.

≤ 2 − 2

∫ b

a

h0(t)S0(t)dt.

Define ĥ = h0 for t /∈ [a, b], which allows us to let both a, b→ ∞ in the above display.
Since

∫∞

0
h0(t)S0(t)dt = 1, it follows that

∫ ∞

0

(ĥ(t) − h0(t))
2

ĥ(t)
S0(t)dt = 0,

and this implies that ĥ(t) = h0(t) for all t ∈ [a, b].

We have thus shown that every subsequence {ĥn(x)} has a further subsequence
which converges to the true hazard function h0(x) pointwise, for all x ∈ (suppF0)

◦. It

follows that {ĥn} converges to h0 pointwise. By Theorem 10.8, page 90, Rockafellar
(1970), this implies that the claimed uniform convergence on [a, b] also holds. As this
happens for any ω ∈ Ω, and P (Ω) = 1, we have shown the result. �

Corollary 4.3. Suppose that h′′0 is continuous and strictly positive at x0. It follows
that there exist touchpoints τn ≤ x0 ≤ ηn such that τn, ηn → x0 in probability.

Proof. Let ηn, τn be touchpoints such that τn ≤ x0 ≤ ηn. If τn does not exist then
set τn = 0, and ηn = ∞ otherwise. Suppose that it is not the case that τn, ηn →p

x0. Then it follows from Theorem 4.1 that there exists an interval I = [a, b] such
that x0 ∈ I, |I| > 0, and lim supn τn ≤ a, lim infn ηn ≥ b almost surely, and lastly

lim ĥn(t) →a.s. h0(t) on I. However, this implies that h0(t) is linear on I, which is a
contradiction. �

Theorem 4.4. (Consistency of the LSE). Suppose that H0(T ) < ∞, and h0 ∈ KT .

Then the LSE h̃n described in Section 3 is consistent: the estimator h̃n(t) converges
to h0(t) for t ∈ (0, T ) with probability one. Also, for all δ > 0, we have

sup
t∈[δ,T−δ]

|h̃n(t) − h0(t)| →a.s. 0.

Remark 4.5. Using the same argument as in Groeneboom et al. (2001b) in Remark

on page 1673, it follows that if h0 is decreasing near zero, then ĥn is not consistent

at zero. The same holds for h̃n. If h0 is increasing near T , then h̃n is not consistent

at T . Lastly, if h0 is increasing in the tail, then ĥn is not consistent in the tail.
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Sketch of proof. The proof of the statement near zero is exactly the same as in Groene-
boom et al. (2001b) (since h(0) = f(0)). For the LSE at T, we obtain from (3.7)
that

(T −X(N))h̃n(T ) ≥ 2Hn(T ),

where N = N(n, ω) is the index of the largest observation less than or equal to T .
Now, Hn(T )/(T −X(N)) will blow up as n gets large.

For the MLE, we get from (2.3) that

ĥn(X(n)) ≥
n

X(n) −X(n−1)

,

and as n grows, the right hand side of the above display converges to a random
variable (using the same arguments as in page 1673 of Groeneboom et al. (2001b)),
Z, such that P (Z > c) > 0 for all c > 0. �

Proof of Theorem 4.4. Let Ω denote the set such that

‖Hn −H0‖T
0 ≡ sup

0≤t≤T
|Hn(t) −H0(t)| → 0 (4.4)

holds; note that P (Ω) = 1: see e.g. Shorack and Wellner (1986), Theorem 7.3.1, page
304.

Let {n′} denote any subsequence of {n}. Our goal will be to show that for any

such subsequence there exists a further subsequence {n′′} such that h̃n′′ converges
(pointwise) to h0 for our chosen ω. We do this in two steps. First, we consider the

case where h0(0) and h0(T ) are both finite. This gives us that
∫ T

0
h2

0(t)dt < ∞, and
we may use the least squares criterion function to obtain the result. The argument

becomes more delicate when
∫ T

0
h2

0(t)dt may be infinite, and this is handled in the
second case.

Suppose then that h0(0), h0(T ) < ∞. Fix any δ > 0, and let τn be the last

changepoint before δ (0 if no such point exists). We will next show that h̃n(τn) and

h̃′n(τn) are uniformly bounded.

To do this we write h̃n = h̃n,↓ + h̃n,↑, the sum of its increasing and decreasing
components. From (3.2) and (2.7) it follows that

if τn ≥ δ/2, h̃n,↓(τn) ≤ h̃n,↓

(
δ
2

)
≤ 2 Hn(T )

δ
,

and if τn < δ/2, Hn(T ) ≥
∫ δ

τn
h̃n,↓(t)dt ≥ δ

4
(h̃n,↓(τn) + h̃n,↓(δ)).

Since (4.4) holds and H0(T ) < ∞, it follows that h̃n,↓(τn) is bounded. Similarly,

h̃n,↑(τn) ≤ h̃n,↑(δ) ≤ Hn(T )/(T − δ), and hence h̃n(τn) is bounded by a constant
depending on H0(T ) and δ.

To bound the derivative, notice that (the right derivative) h̃′n(τn) is the same as

the left derivative of h̃n at δ. Writing the latter as h̃′n(δ), from convexity it follows
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that

Hn(T ) ≥
∫ δ

0

h̃n(δ) + h̃′n(δ) t dt.

We thus conclude that (again, the right derivative) |h̃′n(τn)| is also bounded uniformly
in n.

Similarly, let ηn denote the first changepoint after T −δ. By an identical argument,

we also obtain that the left derivative h̃′n(ηn) and h̃n(ηn) are bounded uniformly in n.

Let {n′} be any subsequence of {n}. Because of the above bounds on h̃n, we may

select a subsequence {n′′} of {n′} such that τn′′ → τ , ηn′′ → η, and h̃n′′(t) → h̃(t) for

all t ∈ (τ, η). Here h̃ is convex, τ ≤ δ, and η ≥ T − δ. We will next show that h̃ ≡ h0

on (τ, η). To simplify notation we denote the subsequence {n′′} simply as {n}.
Let ψa,b

n (h) = 1
2

∫ b

a
h2(t)dt−

∫ b

a
hdHn. Repeating the integration by parts argument

used in (3.1) we obtain that

ψa,b
n (h0) − ψa,b

n (h̃n)

≥ [h0 − h̃n](t)(H̃n − H)(t)
∣∣∣
b

a
− [h0 − h̃n]′(t)(H̃n − Yn)(t)

∣∣∣
b

a

+

∫ T

0

(H̃n − Yn)(s)d[h0 − h̃n]′(s). (4.5)

From the characterization of h̃n(t), (2.7)-(2.10), it follows that the right side of the
last display is non-negative and hence

ψτn,ηn
n (h0) − ψτn,ηn

n (h̃n)

=
1

2

∫ ηn

τn

h2
0(t)dt−

∫ ηn

τn

h0(t)dHn(t) − 1

2

∫ ηn

τn

h̃2
n(t)dt+

∫ ηn

τn

h̃n(t)dHn(t) ≥ 0. (4.6)

Recall that h̃n converges pointwise and is bounded above uniformly in n. Moreover,
(4.4) holds, and h0 ∈ K+. These facts allow us to take limits in the above display
(using e.g. Proposition 18 on p. 270 of Royden (1988)) to obtain that

∫ η

τ

(h̃(t) − h0(t))
2dt ≤ 0,

from which the desired result follows.
Since δ may be chosen arbitrarily small in the above argument, we have thus shown

that h̃n(t) → h0(t) pointwise on (0, T ). By convexity, we obtain uniform convergence
on closed subsets.

It remains to extend the argument to the case when h0(0), h0(T ) are possibly not

finite. As we mentioned previously, this could possibly imply that
∫ T

0
h2

0(t)dt = ∞,
which would cause a problem in the above argument. We give the details assuming
that h0(0) <∞, and h0(T ) = ∞, as the argument is the same on the other side (and
in particular given in Groeneboom et al. (2001b)). The idea of the argument is as
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follows: if h0(T ) = ∞ then for all x < T there exists a y, where x < y < T , and
a sequence of changepoints, {ηn}, such that ηn → y (possibly along a subsequence).
Also, for any y < T , h0(y) < ∞. This allows us to repeat the argument above to
show that ∫ y

τ

(h̃(t) − h0(t))
2dt ≤ 0.

The reason that these points exist is that we select the point y such that h0 is strictly

convex at y, and hence h̃n must have changepoints converging to y.
We next give the remaining details. Choose any δ > 0. Since h0(T ) = ∞, h0(t)

cannot be purely linear on [δ, T ]. That is, there exists a point y ∈ (T − δ, T ) such
that λ0 is strictly convex at y.

Let ǫn and ηn be the changepoints of h̃n closest to y such that ǫn is smaller than y
and ηn is greater than y (note, if no such points exist we select 0, and T respectively
for ǫn and ηn). Since the points are contained inside [0, T ], there exists a subsequence
(which we denote by {n}) such that ǫn → ǫ and ηn → η.

By definition, 0 ≤ ǫ ≤ y ≤ η ≤ T . We next show that the only possibility is that
ǫ = y = η. By way of contradiction, suppose then that ǫ < η.

We first show that h̃n(ηn) is bounded. To do this we write (as before), h̃n =

h̃n,↓ + h̃n,↑, the sum of its increasing and decreasing components. From (3.2) and
(2.7) it follows that

h̃n,↓(ηn) ≤ h̃n,↓(T − δ) ≤ Hn(T )
T−δ

,

if ηn ≤ T − δ/2 h̃n,↑(ηn) ≤ h̃n,↑ +
(
T − δ

2

)
≤ 2 Hn(T )

δ
,

and if ηn > T − δ/2 Hn(T ) ≥
∫ ηn

T−δ
h̃n,↑(t)dt ≥ δ

4
(h̃n,↑(ηn) + h̃n,↑(T − δ)).

Since (4.4) holds and H0(T ) <∞, it follows that h̃n(ηn) is bounded.

Let {tn}m
n=0 denote the changepoints of h̃n, with t0 = 0 and tm = T . From (2.7)-

(2.10) it follows that
∫ tk
0
h̃n(t)dt = Hn(tk) for all k = 0, . . .m. Since h̃n is piecewise

linear, we may also write
∫ tk

0

h̃n(t)dt =
k−1∑

i=0

h̃n(ti+1) + h̃n(ti)

2
(ti+1 − ti).

Hence by Corollary 2.4 we have

1

2

(
h̃n(ǫn) + h̃n(ηn)

)
=

Hn(ηn) − Hn(ǫn)

ηn − ǫn
.

Hence, h̃n(ǫn) must also be bounded uniformly in n. The same is true of the left

derivative of h̃′n(ηn) (which is equal to the right derivative of h̃′n(ǫn) by definition of
ǫn and ηn). Thus, there exists a further subsequence (again denoted by {n}), so that

h̃n(t) → h̃(t) for t in (ǫ, τ).
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By integration by parts, it follows from (2.7)-(2.10), that for any x ∈ [0, T ]
∫ x

ǫn

(x− t)h̃n(t)dt ≥
∫ x

ǫn

(x− t)dHn(t).

Letting n→ ∞, this implies that
∫ x

ǫ

(x− t)h̃(t)dt ≥
∫ x

ǫ

(x− t)h0(t)dt.

Choosing x = η in the above, shows that it is not possible that η = T , as h0(T ) = ∞,

while h̃(T ) is bounded (because h̃n(ηn) and h̃′n(ηn) are bounded).
If, on the other hand, η < T , then, since h0(η) < ∞, we may use (4.5) with

(a, b) = (ǫn, τn) (as in (4.6)) to obtain that
∫ η

ǫ

(h̃(t) − h0(t))
2dt ≤ 0.

However, this implies that h̃(t) = h0(t) on [ǫ, η], where h̃ is linear and h0 is not. The
result follows. �

Notice that we have in fact proved the following result.

Corollary 4.6. Suppose that h′′0 is continuous and strictly positive at x0. It fol-

lows that there exist touch points (changes of slope of h̃n) τn ≤ x0 ≤ ηn such that
τn, ηn →a.s. x0.

From the above we also obtain consistency of the derivatives of both the MLE and
LSE. This follows from the following result.

Lemma 4.7. Suppose that h̄n is a sequence of functions in K+ (or KT ) satisfying
supa≤x≤b |h̄n(t)− h0(t)| = 0 with probability one. Then (also with probability one) for
all x ∈ (a, b)

−∞ < h′0(x
−) ≤ lim inf

n→∞
h̄′n(x−) ≤ lim sup

n→∞
h̄′n(x+) ≤ h′0(x

+) <∞.

Proof. Let ǫ > 0. Since h̄n ∈ K+

h̄n(x− ǫ) − h̄n(x)

−ǫ ≤ h̄′n(x−) ≤ h̄′n(x+) ≤ h̄n(x+ ǫ) − h̄n(x)

ǫ
.

Letting n→ ∞ and then ǫ→ 0 proves the result. �

Here is the immediate corollary for the our two sequences of estimators:

Corollary 4.8. Suppose that x ∈ (a, b) and with hn the MLE ĥn or the LSE h̃n we

have supa≤t≤b |hn(t) − h0(t)| →a.s. 0. Then h
′

n(x) →a.s. h
′
0(x) at all continuity points

x of h′0.
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5. Asymptotic lower bounds for the minimax risk

Define the class of densities C by

C =

{
f : [0,∞) → [0,∞) :

∫ ∞

0

f(x)dx = 1,

h(x) = f(x)/(1 − F (x)) is convex, h(x) > 0 for all x > 0}
We want to derive asymptotic lower bounds for the local minimax risks for estimating
the convex hazard function h and its derivative at a fixed point. The L1− minimax
risk for estimating a functional T of f0 based on a sample X1, . . . , Xn of size n from
f0 which is known to be in a subset Cn of C is defined by

MMR1(n, T, Cn) = inf
Tn

sup
f∈Cn

Ef |Tn − Tf |. (5.1)

where the infimum ranges over all possible measurable functions Tn = tn(X1, . . . , Xn)
mapping R

n to R. The shrinking classes Cn used here are Hellinger balls centered at
f0:

Cn,τ =

{
f ∈ C : H2(f, f0) =

1

2

∫ ∞

0

(√
f(z) −

√
f0(z)

)2

dz ≤ τ/n

}
.

Consider estimation of

T1(f) =
f(x0)

1 − F (x0)
= h(x0), T2(f) = h′(x0). (5.2)

Let f0 ∈ C and x0 > 0 be fixed such that h0 is twice continuously differentiable at x0.
Define, for ǫ > 0, the functions hǫ as follows:

hǫ(z) =





h0(x0 − ǫcǫ) + (z − x0 + ǫcǫ)h
′
0(x0 − ǫcǫ), z ∈ [x0 − ǫcǫ, x0 − ǫ],

h0(x0 + ǫ) + (z − x0 − ǫ)h′0(x0 + ǫ), z ∈ [x0 − ǫ, x0 + ǫ],
h0(z), otherwise.

Here cǫ is chosen so that hǫ is continuous at x0 − ǫ. Using continuity of hǫ and a
second order expansion of h0 it follows that cǫ = 3 + o(1) as ǫ→ 0. Now define fǫ by

fǫ(z) = exp(−Hǫ(z))hǫ(z)

where Hǫ(z) ≡
∫ z

0
hǫ(u)du. It follows easily that

T1(fǫ) − T1(f0) =
1

2
h′′0(x0)ǫ

2 + o(ǫ2), (5.3)

T2(fǫ) − T2(f0) = h′′0(x0)ǫ+ o(ǫ). (5.4)

Furthermore, the following lemma holds.

Lemma 5.1. Under the above assumptions

H2(fǫ, f0) =
2

5

h′′0(x0)
2(1 − F (x0))

h0(x0)
ǫ5 + o(ǫ5) ≡ ν0ǫ

5 + o(ǫ5).
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Proof. The lemma will follow from Lemma 3.2 of Jongbloed (1995) if we show that

∫
(fǫ(x) − f0(x))

2

f0(x)
dx =

16

5

h′′0(x0)
2(1 − F (x0))

h0(x0)
ǫ5 + o(ǫ5).

Thus we write
∫

(fǫ(x) − f0(x))
2

f0(x)
dx

=

∫
(hǫ(x) exp(−Hǫ(x)) − h0(x) exp(−H0(x)))

2

h0(x) exp(−H0(x))
dx

=

∫
{(hǫ(x) − h0(x)) exp(−Hǫ(x)))

+ h0(x)(exp(−Hǫ(x)) − exp(−H0(x)))}2 1

h0(x) exp(−H0(x))
dx (5.5)

where

Hǫ(z) =





H0(z), z ≤ x0 − ǫcǫ,

H0(x0 − ǫcǫ) + h0(x0 − ǫcǫ)(z − x0 + ǫcǫ)
+ 1

2
h′0(x0 − ǫcǫ)(z − x0 + ǫcǫ)

2, z ∈ [x0 − ǫcǫ, x0 − ǫ],

H0(x0 − ǫcǫ) + h0(x0 − ǫcǫ)(cǫ − 1)ǫ
+ 1

2
h′0(x0 − ǫcǫ)(cǫ − 1)2ǫ2

+ h0(x0 + ǫ)(z − x0 + ǫ)
+ 1

2
h′0(x0 + ǫ)[(z − x0 − ǫ)2 − (2ǫ)2], z ∈ [x0 − ǫ, x0 + ǫ],

H0(x0 − ǫcǫ) + h0(x0 − ǫcǫ)(cǫ − 1)ǫ
+ 1

2
h′0(x0 − ǫcǫ)(cǫ − 1)2ǫ2

+ h0(x0 + ǫ)(2ǫ) + 1
2
h′0(x0 + ǫ)[−(2ǫ)2]

+ H0(z) −H0(x0 + ǫ), z ∈ [x0 + ǫ,∞).

It follows that supz |Hǫ(z) −H0(z)| = O(ǫ3), so the second term of (5.5) contributes
a term of order O(ǫ6). Calculations similar to those of Jongbloed (1995) (see also
Jongbloed (2000)) and Groeneboom et al. (2001b)) complete the proof of the lemma.
2

Combining (5.3) and (5.4) with the lemma, and writing S0(x) = 1−F0(x), it follows
that

|T1(f(ǫ/ν0)1/5) − T1(f0)| ≥
(
h0(x0)

√
h′′0(x0)

S0(x0)8
√

2

)2/5

ǫ2/5(1 + o(1)),
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and

|T2(f(ǫ/ν0)1/5) − T2(f0)| ≥
(

5h0(x0)h
′′
0(x0)

3

2S0(x0)

)1/5

ǫ1/5(1 + o(1)).

From these calculations together with Lemma 5.1 of Groeneboom et al. (2001b), we
have the following theorem.

Theorem 5.2. (Minimax risk lower bound). For the functionals T1 and T2 as defined
in (5.2), and with MMR1(n, T, Cn,τ ) as defined in (5.1),

sup
τ>0

lim sup
n→∞

n2/5MMR1(n, T1, Cn,τ ) ≥
1

4

(
h0(x0)

√
h′′0(x0)

S0(x0)e8
√

2

)2/5

and

sup
τ>0

lim sup
n→∞

n1/5MMR1(n, T2, Cn,τ ) ≥
1

4

(
1

4e

h0(x0)h
′′
0(x0)

3

2S0(x0)

)1/5

.

6. Rates of Convergence

This section contains several technical results which allow us to identify the local
rates of convergence for our estimators. For the LSE, fix a point x0 ∈ (0, T ) where
T < F−1

0 (1). For the MLE, fix a point x0 ∈ (suppf0)
◦. Throughout this section we

assume that h′′0(·) is continuous and strictly positive in a neighborhood of x0, and
that h(x0) > 0.

6.1. U Function Estimates. We begin by defining two key processes: for 0 < x ≤ y,
define the functions

U lse
n (x, y) =

∫ y

x

{
z − 1

2
(x+ y)

}
d (Hn −H0) (z),

and

Umle
n (x, y) =

∫ y

x

{
z − 1

2
(x+ y)

ĥn(z)

}
d (Fn − F0) (z).

Lemma 6.1. Let x0 ∈ (0, T ) and assume that H0(T ) < ∞. Then for each ǫ > 0
there exist constants δ, c0, n0 > 0 and (positive) random variables Mn of order Op(1)
such that for each |x− x0| < δ

|U lse
n (x, y)| ≤ ǫ(y − x)4 + n−4/5Mn, 0 ≤ y − x ≤ c0. (6.1)

for all n ≥ n0. The same inequality holds for U lse
n (x, y) replaced with Umle

n (x, y).
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Proof. The difficulty here in comparison to the proofs in Groeneboom, Jongbloed and
Wellner (2001b) is that Hn(x) =

∫
[0,x]

(1 − Fn(s−))−1dFn(s) is not a linear function

of the empirical distribution Fn, so extra work is involved in handling the random
denominator.

We begin by writing

U lse
n (x, y) =

∫

[x,y]

fx,y(z)

Sn(z−)
d(Fn(z) − F0(z))

+

∫

[x,y]

[Sn(z−) − S0(z−)]

Sn(z−)S0(z−)
fz,y(z)dF0(z)

≡ U (1)
n (x, y) + U (2)

n (x, y)

where

fx,y(z) ≡ (z − (x+ y)/2)1[x,y](z) = (z − x)1[x,y](z) −
1

2
(y − x)1[x,y](z).

To handle U
(1)
n , choose δ and c0 so that γ ≡ S0(x0 + δ + c0)/2 > 0, and consider the

class of functions

F (1)
x,R ≡

{
z 7→ fx,y(z)

S(z−)
: x ≤ y ≤ x+R, S right continuous,

and nonincreasing with ‖S − S0‖x0+δ+c0
x0−δ ≤ γ

}
.

Then F (1)
x,R has envelope function

F
(1)
x,R(z) =

1

γ

{
(z − x)1[x,x+R](z) +

1

2
R1[x,x+R](z)

}

with

E
{

[F
(1)
x,R]2

}
=

1

γ2

∫

[x,x+R]

[(z − x) +R/2]2f0(z)dz ≤
13

12γ2
‖f0‖x0+δ

x0−δR
3.

Since logN[ ](ǫ,F (1)
x,R, L2(P )) ≤ K/ǫ for some constant K by van der Vaart and Well-

ner (1996), Theorem 2.7.5, page 164, and a straightforward bracketing argument, it
follows from van der Vaart and Wellner (1996), Theorems 2.14.2 and 2.14.5, pages
240 and 244, that

E






 sup

f∈F
(1)
x,R

|(Pn − P0)(f)|




2
 ≤ 1

n
K ′E{[F (1)

x,R(X1)]
2} = O(n−1R3). (6.2)

To control U
(2)
n , note that it can be rewritten as

(Pn − P0)(gx,y,Sn)

where

gx,y,S(u) ≡
∫

[x,y]

fx,y(z)

S(z−)S0(z−)
1[z,∞)(u)f0(z)dz.
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This leads to consideration of the class of functions

F (2)
x,R ≡

{
u 7→ gx,y,S(u) : x ≤ y ≤ x+R, S right continuous,

and nonincreasing with ‖S − S0‖x0+δ+c0
x0−δ ≤ γ

}
.

For this class of functions we can take the envelope function to be

F
(2)
x,R(u) =

(‖f0‖x0+δ
x0−δ)

γ2
{R(u− x)} 1[x,x+R](u),

with

E{[F (2)
x,R(X1)]

2} =
(‖f0‖x0+δ

x0−δ)
2

2γ4
R5.

Since logN[ ](ǫ,F (2)
x,R, L2(P )) ≤ K/ǫ for some constantK by van der Vaart and Wellner

(1996), Theorem 2.7.5, page 159, and a straightforward bracketing argument, it then
follows from van der Vaart and Wellner (1996), Theorems 2.14.2 and 2.14.5, pages
240 and 244, that

E







 sup
f∈F

(2)
x,R

|(Pn − P0)(f)|




2
 ≤ 1

n
KE{[F (1)

x,R(X1)]
2} = O(n−1R5). (6.3)

Let Gn ≡ {‖Sn − S0‖x0+δ+c0
x0−δ ≤ γ}, and note that

P (Gc
n) = P (‖Sn − S0‖x0+δ+c0

x0−δ > γ) ≤ P (‖Sn − S0‖ > γ) ≤ 2e−2nγ2

by Massart’s sharpening of the DKW inequality (Massart (1990)).
Now define Mn(ω) as the infimum (possibly +∞) of those values such that (6.1)

holds. Define A(n, j) to be the set
[
(j − 1)n−1/5, jn−1/5

)
. Then for m constant

P (Mn > m)

≤ P ([Mn > m] ∩Gn) + P (Gc
n)

≤ P
(
[∃u : |U lse

n (x, x+ u)| > ǫu4 + n−4/5m] ∩Gn

)
+ 2e−2nγ2

≤
∑

j≥1

P
(
[∃u ∈ A(n, j) : n4/5

∣∣U lse
n (x, x+ u)

∣∣ > ǫ(j − 1)4 +m] ∩Gn

)
+ 2e−2nγ2

The jth summand is hence bounded by

n8/5E

[
sup

u∈A(n,j)

|U lse
n (x, x+ u)|21Gn

]
/
[
m+ ǫ(j − 1)4

]2

≤ C1
j3

[m + ǫ(j − 1)4]2
+ C2n

−2/5 j5

[m + ǫ(j − 1)4]2
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due to (6.2) and (6.3). Thus it follows that

lim sup
n→∞

P (Mn > m) ≤ C1

∞∑

j=1

j3

[m + ǫ(j − 1)4]2

where the sum in the bound is finite and converges to zero as m→ ∞. This completes
the proof of the claim for U lse

n .
The same type of proof with appropriate modifications works for Umle

n : note that

Umle
n = (Pn − P0)(gx,y,ĥn

)

where

gx,y,h(z) ≡
fx,y(z)

h(z)
1[x,y](z),

and, in view of the consistency established in Theorem 4.1, ĥn is a convex function
uniformly close to h0 on neighborhoods of x0. This leads to consideration of the class
of functions

Fx,R ≡
{
z 7→ gx,y,h(z) : x ≤ y ≤ x+R, h convex,

‖h− h0‖x0+δ+c0
x0−δ ≤ γ

}
.

with γ ≡ infx0−δ≤x≤x0+δ+c0 h0(x)/2, and where we now take Gn ≡ {‖ĥn−h0‖x0+δ+c0
x0−δ ≤

γ}. The class Fx,R has an envelope function of the same form as the envelope F
(1)
x,R in

(6.1) with the new definition of γ, and hence the same second moment bound holds:

E
{
[Fx,R]2

}
=

1

γ2

∫

[x,x+R]

[(z − x) +R/2]2f0(z)dz ≤
13

12γ2
‖f0‖x0+δ

x0−δR
3.

Furthermore, logN[ ](ǫ,Fx,R, L2(P0)) ≤ K/ǫ1/2 for some constant K by van der Vaart
and Wellner (1996), Theorem 2.7.10, page 159, and a straightforward bracketing
argument. It then follows from van der Vaart and Wellner (1996), Theorems 2.14.2
and 2.14.5, pages 240 and 244, that

E





(
sup

f∈Fx,R

|(Pn − P0)(f)|
)2


 ≤ 1

n
K ′E{[Fx,R(X1)]

2} = O(n−1R3). (6.4)

The remainder of the argument is the same as for the LSE. �

Define

Vn(x, y) =

∫ y

x

{
z − x+ y

2

}
( Sn(z) − S0(z))dz.

Lemma 6.2. Let x0 ∈ (suppF0)
◦. Then for each ǫ > 0 there exist constants δ, c0 > 0

and (positive) random variables Mn of order Op(1) such that for each |x− x0| < δ

|Vn(x, y)| ≤ ǫn−1/5(y − x)4 + n−1Mn, 0 ≤ y − x ≤ c0. (6.5)
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Proof. This follows from the same argument used for U
(2)
n (x, y) in the proof of

Lemma 6.1, but now much more easily since there is no troublesome denominator
term and no density term to complicate the calculation. In this case we compute

Vn(x, y) = (Pn − P0)(gx,y)

where

gx,y(z) =
1

2
(z − x)(z − y)1[x,y](z) =

1

2

{
(z − x)2 − (y − x)(z − x)

}
1[x,y](z).

Thus we consider the class of functions

Gx,R ≡ {z 7→ gx,y(z) : x ≤ y ≤ x+R},

a VC-subgraph class with envelope function

Gx,R(z) =
1

2
(z − x)2 +

R

2
(z − x)1[x,x+R](z),

so that

E{[G2
x,R(X1)]

2} ≤ C‖f0‖x0+δ
x0−δR

5.

Thus by van der Vaart and Wellner (1996), Theorem 2.14.1, page 239,

E





(
sup

f∈Gx,R

|(Pn − P0)(f)|
)2


 ≤ 1

n
KE{[Gx,R(X1)]

2} = O(n−1R5). (6.6)

Now let Mn(ω) be the infimum of those values (possibly infinity) such that (6.5) holds.
Then for m > 0,

P (Mn > m) ≤ P
(
∃u : |Vn(x, x+ u)| > ǫn−1/5u4 + n−1m

)

≤
∑

j≥1

P
(
∃u ∈ A(n, j) : n |Vn(x, x+ u)| > ǫ(j − 1)4 +m

)

≤
∑

j≥1

n2E

{
sup

u∈A(n,j)

|Vn(x, x+ u)|2
}/

[m+ ǫ(j − 1)4]2

≤ C
∑

j≥1

j5

[m+ ǫ(j − 1)4]2

where the right side converges to 0 as m→ ∞. �
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6.2. Midpoint Properties.

Lemma 6.3. Let x0 > 0 be a point at which h0 has a continuous and strictly positive
second derivative, and h(x0) > 0. Let ξn be any sequence of numbers converging to

x0 and define τn and ηn to be the largest touchpoint of ĥn smaller than ξn and the
smallest touchpoint larger than ξn respectively. Then

ηn − τn = Op(n
−1/5)

for the MLE of the hazard rate. The same conclusion holds for the LS estimator (with
x0 < T ).

Proof. Define mn to be the midpoint of [τn, ηn], mn = (τn + ηn)/2.
We first consider the MLE, as this is the more difficult of the two cases. By Theorem

4.1, we know that ĥn is finite and positive near x0 for large enough n. Also, it is either
strictly increasing or strictly decreasing in a neighborhood of x0 (as in Figure 6.2 (b)),
or is locally flat as the picture in Figure 6.2 (a).

τn x0 ηn τn x0 ηn

Figure 6.2 (a) Figure 6.2 (b)

If ĥn is decreasing between τn and ηn, then (3.15) and (2.2) with equality at both

ηn, τn hold. If ĥn is increasing instead, then (3.16) and (2.3) with equality at both
ηn, τn hold. There is only the potential for a problem in the situation shown in Figure

6.2 (a). However, since ĥn is strictly positive, by Corollary 3.4 we can extend the
necessary equalities to this case as well. Therefore, we may only consider two cases,

either ĥn is nonincreasing or nondecreasing on [τn, ηn].

We first assume that ĥn is nonincreasing on [τn, ηn]. Define

Ĥn,↓(z) =

∫ z

0

z − t

ĥn(t)
dFn(t) (6.7)

An,↓(z) =

∫ z

0

Sn(t)dt. (6.8)

We may then calculate

Ĥn,↓(mn) =

∫ ηn

mn

x−mn

ĥn(x)
dFn(x) + Ĥn,↓(ηn) − (ηn −mn)Ĥ′

n,↓(ηn)
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and

Ĥn,↓(mn) =

∫ mn

τn

mn − x

ĥn(x)
dFn(x) + Ĥn,↓(τn) + (mn − τn)Ĥ′

n,↓(τn).

From (2.2) we know that 2Ĥn,↓(mn) ≤ 2
∫mn

0
An,↓(t)dt. Using the equality in (2.2)

and (3.15) allow us to rewrite this as 0 ≥ L1,↓ + L2,↓, where L1,↓ is equal to
∫ ηn

mn

x−mn

ĥn(x)
dFn(x) +

∫ mn

τn

mn − x

ĥn(x)
dFn(x) − ηn − τn

4

{
Ĥ′

n,↓(ηn) − Ĥ′
n,↓(τn)

}

=

∫ ηn

mn

x− 1
2
(ηn +mn)

ĥn(x)
dFn(x) +

∫ mn

τn

1
2
(τn +mn) − x

ĥn(x)
dFn(x).

and

L2,↓ =

∫ ηn

mn

An,↓(x)dx−
∫ mn

τn

An,↓(x)dx−
1

4
(ηn − τn) {An,↓(ηn) − An,↓(τn)}

= −
{∫ ηn

mn

{
x− 1

2
(ηn +mn)

}
Sn(x)dx+

∫ mn

τn

{
1

2
(τn +mn) − x

}
Sn(x)dx

}
,

by integration by parts.

Now suppose that ĥn is nondecreasing on [τn, ηn]. Define

Ĥn,↑(z) =

∫ ∞

z

t− z

ĥn(t)
dFn(t) (6.9)

An,↑(z) =

∫ ∞

z

Sn(t)dt. (6.10)

We again calculate, using the equality of (2.3) and (3.16),

Ĥn,↑(mn) =

∫ ηn

mn

x−mn

ĥn(x)
dFn(x) + Ĥn,↑(ηn) + (ηn −mn)Ĥ′

n,↑(ηn)

and

Ĥn,↑(mn) =

∫ mn

τn

mn − x

ĥn(x)
dFn(x) + Ĥn,↑(τn) − (mn − τn)Ĥ′

n,↑(τn).

From (2.3) we know that 2Ĥn,↑(mn) ≤ 2
∫∞

mn
An,↑(t)dt. Using the equality of (2.3)

and (3.16) we rewrite this as 0 ≥ L1,↑ + L2,↑, where L1,↑ = L1,↓ and L2,↑ is calculated
to be

−
{∫ ηn

τn

An,↑(x)dx− 2

∫ mn

τn

An,↑(x)dx−
1

4
(ηn − τn) {An,↑(ηn) − An,↑(τn)}

}
.

By integration by parts, this is equal to L2,↓. Therefore the two cases both satisfy
the inequality 0 ≥ L1,↓ + L2,↓.
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Now replace Fn by the true F0 in the definition of L1,↓ to obtain

L0
1,↓ ≡

∫ ηn

mn

x− 1
2
(ηn +mn)

ĥn(x)
dF0(x) +

∫ mn

τn

1
2
(τn +mn) − x

ĥn(x)
dF0(x)

=

∫ ηn

mn

{
x− 1

2
(ηn +mn)

}{
1

ĥn(x)
− 1

h0(x)

}
dF0(x)

+

∫ mn

τn

{
1

2
(τn +mn) − x

}{
1

ĥn(x)
− 1

h0(x)

}
dF0(x) − L0

2,↓,

where

L0
2,↓ = −

∫ ηn

mn

{
x− 1

2
(ηn +mn)

}
S0(x)dx−

∫ mn

τn

{
1

2
(τn +mn) − x

}
S0(x)dx.

Using a Taylor expansion of order 2 about the point mn, we next get that

L0
1,↓ + L0

2,↓ =

∫ ηn

mn

{
x− 1

2
(ηn +mn)

}{
1

ĥn(x)
− 1

h0(x)

}
f0(x)dx

+

∫ mn

τn

{
1

2
(τn +mn) − x

}{
1

ĥn(x)
− 1

h0(x)

}
f0(x)dx

=
1

192

{(
1

ĥn(·)
− 1

h0(·)

)
f0(·)

}′′

(x0)(ηn − τn)4 + o((ηn − τn)4)

=
1

192

{
h′′0(x0)

h2
0(x0)

f0(x0)

}
(ηn − τn)4 + o((ηn − τn)4),

since both ĥn and ĥ′n are consistent by Theorem 4.1, ĥ′′n(x) = 0 on (τn, ηn), and
because τn − ηn = op(1) by Corollary 4.3.

Therefore, by Lemmas 6.1 and 6.2 and the above calculations, we may write

0 ≥ L1,↓ + L2,↓

= L0
1,↓ + L0

2,↓ + (L1,↓ − L0
1,↓) + (L2,↓ − L0

2,↓)

≥ L0
1,↓ + L0

2,↓ − ǫ(ηn − τn)4 − Op(n
−4/5) − ǫn−1/5(ηn − τn)4 −Op(n

−1)

=
1

192

{
h′′0(x0)

h2
0(x0)

f(x0) − 192ǫ

}
(ηn − τn)4 + o

(
(ηn − τn)4

)
−Op(n

−4/5).

We choose ǫ sufficiently small (so that the leading term in the last line of the above
display is positive), and hence conclude that (ηn − τn) = Op(n

−1/5).

Now for the rate in the case of the LSE. As before, let Hn denote the empirical

hazard function, H̃n(t) =
∫ t

0
h̃n(s)ds, and H̃n(t) =

∫ t

0
H̃n(s)ds. It follows from Lemma
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2.3 that

H̃n(mn) ≥ Yn(mn),

where Yn(t) =
∫ t

0
Hn(s)ds. Using the equality in (2.9) and Corollary 2.4 we calculate

H̃n(mn) =
1

2
{Yn(τn) + Yn(ηn)} − 1

8
{Hn(ηn) − Hn(τn)}(ηn − τn).

Let Y0(t) =
∫ t

0
H0(s)ds. Then

2H̃0(mn) − 2Y0(mn)

=

∫ mn

τn

{
x− 1

2
(τn +mn)

}
h0(x)dx+

∫ ηn

mn

{
1

2
(τn +mn) − x

}
h0(x)dx

= − 1

192
h′′0(mn)(ηn − τn)4 + o(ηn − τn)4

= − 1

192
h′′0(x0)(ηn − τn)4 + o(ηn − τn)4,

using Corollary 4.6 in the last line.
From Lemma 6.1 it therefore follows that

0 ≤ 2H̃n(mn) − 2Yn(mn)

= 2H̃0(mn) − 2Y0(mn) +

∫ mn

τn

{
x− 1

2
(τn +mn)

}
d{Hn −H0}(x)

+

∫ ηn

mn

{
1

2
(τn +mn) − x

}
d{Hn −H0}(x)

= −
(

1

192
h′′0(x0) − ǫ

)
(ηn − τn)4 + o(ηn − τn)4 +Op(n

−4/5)

Choosing ǫ sufficiently small proves the result. �

6.3. Some heuristics. In this section we briefly describe some heuristics which hope-
fully shed light on the use of the function U#

n (x, y) for # =MLE or LSE. We do this

only for the LSE case. Let τn ≤ ηn be two touch points. Since h̃n(t) is piecewise lin-

ear, and in particular linear between the touch points, we note that H̃n(t) is a cubic
spline. Thus, using the two conditions from the equality in (2.7) and (2.4) evaluated

at τn and ηn we may calculate H̃n(t) explicitly. This gives

(H̃n)′′′(t) =
12

(ηn − τn)3

∫ ηn

τn

{t−mn} dHn(t),
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for t ∈ [τn, ηn]. Also, expanding the function h0 around mn = (ηn + τn)/2 to second
order shows that

∫ ηn

τn

{t−mn} dH0(t) = h′0(mn)
1

12
(ηn − τn)3 +O(ηn − τn)4.

This yields that for t ∈ [τn, ηn]

h̃′n(t) − h′0(t) =
12

(ηn − τn)3
U lse

n (τn, ηn) +O(ηn − τn).

Since ηn − τn = Op(n
−1/5), we apply Lemma 6.1 and, if we could also assume that

(ηn − τn)−1 = Op(n
−1/5), it would follow that

|h̃′n(t) − h′0(t)| ≤ 12

(ηn − τn)3

{
ǫ(ηn − τn)4 +Mnn

−4/5
}

+Op(n
−1/5)

≈ 12ǫ(ηn − τn) +Op(n
−1/5) = Op(n

−1/5),

for t ∈ [τn, ηn], which gives us the correct rates of convergence for our estimator. In
the next section, we make these ideas rigorous.

6.4. From Here to Tightness.

Lemma 6.4. Let ξn be a sequence converging to x0. Then for any ǫ > 0 there exists
and M > 1 and a c > 0 such that, with probability greater than 1 − ǫ we have that

there exist change points τn < ξn < ηn of ĥn such that

inf
t∈[τn,ηn]

|ĥn(t) − h0(t)| < cn−2/5

for all n sufficiently large. The same statement holds for h̃n.

Proof. Fix ǫ > 0. From Lemma 6.3 it follows that there exist touchpoints ηn and
τn and an M > 1 such that ξn −Mn−1/5 ≤ τn ≤ ξn − n−1/5 ≤ ξn + n−1/5 ≤ ηn ≤
ξn +Mn−1/5.

Fix c > 0 and consider the event

inf
t∈[τn,ηn]

|ĥn(t) − h0(t)| ≥ cn−2/5. (6.11)

First, assume that ĥn is nonincreasing on [τn, ηn]. On this set, we have that

∣∣∣∣∣

∫ ηn

τn

(ηn − t)
ĥn(t) − h0(t)

ĥn(t)
S0(t)dt

∣∣∣∣∣ ≥ Bcn−2/5(ηn − τn)2 ≥ Bcn−4/5,
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where B is some constant depending on x0. Using the definitions (6.7) and (6.8), as
well as the equality in Condition (2.2) with (3.15), it follows that

0 = Ĥn,↓(ηn) −
∫ ηn

0

An,↓(t)dt− Ĥn,↓(τn) +

∫ τn

0

An,↓(t)dt

− (Ĥ′
n,↓(τn) − An,↓(τn))(ηn − τn)

=

∫ ηn

τn

ηn − t

ĥn(t)
dFn(t) −

∫ ηn

τn

(ηn − t)Sn(t)dt

=

∫ ηn

τn

(ηn − t)
ĥn(t) − h0(t)

ĥn(t)
S0(t)dt+

∫ ηn

τn

ηn − t

ĥn(t)
dF̆n(t) −

∫ ηn

τn

(ηn − t)S̆n(t)dt,

where F̆n(t) = Fn(t)−F0(t) and S̆n(t) = Sn(t)− S0(t). By the assumption on h0 and
x0 and arguments similar to those of Lemmas 6.1 and 6.2, it follows that

∫ ηn

τn

(ηn − t)
ĥn(t) − h0(t)

ĥn(t)
S0(t)dt = Op(n

−4/5),

which is a contradiction to (6.11) if c is chosen large enough.

Next, suppose that ĥn is nondecreasing on [τn, ηn]. Using the definitions (6.10) and
(6.9), as well as the equality in Condition (2.3) with (3.16), it follows that

0 = Ĥn,↑(ηn) −
∫ ∞

ηn

An,↑(t)dt− Ĥn,↑(τn)

+

∫ ∞

τn

An,↑(t)dt+ (Ĥ′
n,↑(ηn) − An,↑(ηn))(ηn − τn)

=

∫ ηn

τn

τn − t

ĥn(t)
dFn(t) −

∫ ηn

τn

(τn − t)Sn(t)dt.

The same argument as above now proves the result.

Now for the LSE. We begin by assuming that (6.11) holds with ĥn replaced with

h̃n, by way of contradiction. Using the equality of Condition (2.7) and Corollary 2.4,
we calculate

0 =

∫ ηn

τn

(ηn − t)d(H̃n − Hn)(t)

=

∫ ηn

τn

(ηn − t)(h̃n(t) − h0(t))dt−
∫ ηn

τn

(ηn − t)d{Hn −H0}(t)

implying as above that
∫ ηn

τn

(ηn − t)(h̃n(t) − h0(t))dt = Op(n
−4/5),

by a similar argument to Lemma 6.1, which contradicts the assumption, and the
result follows.
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�

The next result is the actual statement of tightness in this setting. The results
follows from the previous lemmas, and make extensive use of the underlying convexity.

Proposition 6.5. Under the assumptions of this section, we have that for each M > 0

sup
|t|≤M

|ĥn(x0 + n−1/5t) − h0(x0) − n−1/5th′0(x0)| = Op(n
−2/5) (6.12)

and

sup
|t|≤M

|ĥ′n(x0 + n−1/5t) − h′0(x0)| = Op(n
−1/5). (6.13)

The same statement holds for ĥn replaced with h̃n.

Proof. The proof of this result is exactly the same in both cases, as it depends only on
Lemmas 6.3 and 6.4, and the convexity of both the estimators and the true function.

We therefore write the result only for ĥn.
We begin with the proof of (6.13). Fix M > 0 and ǫ > 0. Define ηn,1 to be the first

point of touch after x0 +Mn−1/5, ηn,2 to be the first point of touch after ηn,1 +n−1/5,
and ηn,3 to be the first point of touch after ηn,2 + n−1/5. Define the points τn,i for
i = 1, 2, 3 similarly, but working to the left of x0. That is, τn,1 is the first touch
point smaller than x0 − Mn−1/5 and so forth. By Lemma 6.4, there exist points
ξn,i ∈ (ηn,i, ηn,i+1) and ζn,i ∈ (τn,i, τn,i+1) for i = 1, 2, and a constant c > 0, such that
with probability at least 1 − ǫ we have that

|ĥn(ξn,i) − h0(ξn,i)| ≤ cn−2/5,

and similarly with ξn,i replaced with ζn,i for i = 1, 2.

In what follows, if ĥ′n(t) does not exist, we take the right derivative at t. From the

convexity of ĥn, it follows that for any t ∈ [x0 −Mn−1/5, x0 +Mn−1/5]

ĥ′n(t) ≤ ĥ′n(ξn,1) ≤ ĥn(ξn,2) − ĥn(ξn,1)

ξn,2 − ξn,1

≤ h0(ξn,2) − h0(ξn,1) + 2cn−2/5

ξn,2 − ξn,1

≤ h′0(ξn,2) + 2cn−1/5,

since ξn,2 − ξn,1 ≥ n−1/5. Because of the continuity of h′′0(·) near x0 we may replace
h′0(ξn,2) in the above display with h′0(x0)+ c̃n

−1/5, for some new constant c̃. The result
follows. A similar argument shows the lower bound.

Now for (6.12). By Lemma 6.3, there exists a constant K > M such that there
exist two touch points in [x0 + Mn−1/5, x0 + Kn−1/5], n−1/5 apart with probability
1− ǫ. The same occurs in the interval [x0 −Mn−1/5, x0 −Kn−1/5]. From Lemma 6.4,
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it follows that there exists points ξn ∈ [x0 + Mn−1/5, x0 + Kn−1/5] and ζn ∈ [x0 −
Mn−1/5, x0 −Kn−1/5] such that

|ĥn(ξn) − h0(ξn)| ≤ cn−2/5,

and also for ζn with probability at least 1− ǫ and sufficiently large n. Lastly, we have
already shown that there exists a c′ such that with probability at least 1 − ǫ

sup
t∈[x0−Kn−1/5,x0+Kn−1/5]

|ĥ′n(t) − h′0(x0)| ≤ c′n−1/5.

Therefore, with probability at least 1−3ǫ, we have that for any t ∈ [x0−Mn−1/5, x0+
Mn−1/5] and sufficiently large n

ĥn(t) ≥ ĥn(ξn) + ĥ′n(ξn)(t− ξn)

≥ h0(ξn) − cn−2/5 + (h′0(x0) − c′n−1/5)(t− ξn)

= h0(x0) + h′(x0)(ξn − x0) +
1

2
h′′(x∗0)(ξn − x0)

2 + (h′0(x0) − c′n−1/5)(t− ξn) − cn−2/5

= h0(x0) + h′(x0)(t− x0) +
1

2
h′′(x∗0)(ξn − x0)

2 − c′n−1/5(t− ξn) − cn−2/5

≥ h0(x0) + h′(x0)(t− x0) − Bn−2/5.

for some constant B > 0.
For the upper bound, we have that

ĥn(t) ≤ ĥn(ζn) +
ĥn(ξn) − ĥn(ζn)

ξn − ζn
(t− ζn)

≤ h0(ζn) + cn−2/5 +
h0(ξn) − h0(ζn)

ξn − ζn
(t− ζn) + 2cn−1/5(t− ζn)

= h0(x0) + h′0(x0)(ζn − x0) +
1

2
h′′0(x

∗∗
0 )(ζn − x0)

2

+ h′0(x0)(t− ζn) + 3cn−2/5 +

{
h0(ξn) − h0(ζn)

ξn − ζn
− h′0(x0)

}
(t− ζn)

≤ h0(x0) + h′0(x0)(t− x0) +B′n−2/5,

for some B′ > 0, by the smoothness properties of h0 near x0. This proves the
result. �

7. Limit distribution theory for the estimators at a fixed point

This section is dedicated to the analysis of the limiting distribution of the estimators
at a fixed point x0, and hence the proof of Theorem 2.7. As in the previous section,
we assume here that h′′0(·) is continuous and strictly positive in a neighborhood of x0,
and that h0(x0) > 0.
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The asymptotics are described by the invelope I(·) of the “driving” process Y (·).
Our goal will then be to identify the two processes, one which will converge to the
invelope, and another which converges to the driving process Y in the limit problem.

The proof is split into two cases corresponding to the LSE and the MLE respectively.
We handle the LSE first, since it is easier.

For any interval [a, b] ⊂ R, let D[a, b] denote the space of cadlag functions from
[a, b] into R endowed with the Skorohod topology. Similarly, C[a, b] denotes the space
of continuous functions endowed with the uniform topology.

7.1. Proof of Theorem 2.7 for the LSE.

Driving process for the LSE. Define

Bn(t) ≡
√
n(Hn(t) −H0(t)) (7.1)

From Shorack and Wellner (1986), Chapter 7, Theorem 7.4.1, page 307, we know that
for t ∈ (0, T0) with T0 ≡ T0(F0) ≡ inf{x : F (x) = 1}, Bn(t) ⇒ B(C(t)) in D[0,M ]
for M < T0, where B denotes a standard Brownian motion on [0,∞) and

C(t) =
F0(t)

1 − F0(t)
=

1

1 − F0(t)
− 1. (7.2)

Since Yn(t) =
∫
[0,t]

Hn(s)ds, we define xn(t) = x0 + n−1/5t and

Ỹ
loc
n (t) ≡ n4/5

∫ xn(t)

x0

{
Hn(v) − Hn(x0) −

∫ v

x0

(h0(x0) + (u− x0)h
′
0(x0))du

}
dv. (7.3)

Thus we can rewrite Ỹloc
n as follows:

Ỹ
loc
n (t) = n4/5

∫ xn(t)

x0

{Hn(v) − Hn(x0) − (H0(v) −H0(x0))} dv

+ n4/5

∫ xn(t)

x0

{
H0(v) −H0(x0) −

∫ v

x0

(h0(x0) + (u− x0)h
′
0(x0))du

}
dv

= n3/10

∫ xn(t)

x0

{Bn(v) − Bn(x0)} dv + n4/5

∫ xn(t)

x0

1

6
h′′0(x

∗
0)(v − x0)

3dv + o(1)

= n3/10

∫ x0+n−1/5t

x0

{Bn(v) − Bn(x0)} dv +
1

24
h′′0(x0)t

4 + o(1).

Thus it follows easily that

Ỹ
loc
n (t) ⇒

√
C ′(x0)

∫ t

0

W (s)ds+
1

24
h′′0(x0)t

4 in D[−M,M ]

for each fixed 0 < M <∞ where W is a two-sided Brownian motion process starting
at 0 and

C ′(t) =
f0(t)

(1 − F0(t))2
=

h0(t)

1 − F0(t)
.
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Now for the derivative. Let H̆n(t) = Hn(t) −H0(t).

(Ỹloc
n )′(t) = n3/5

{
Hn(xn(t)) − Hn(x0) −

∫ xn(t)

x0

(h0(x0) + (u− x0)h
′
0(x0))du

}

= n3/5
{

H̆n(x0 + n−1/5t) − H̆n(x0)

+H0(xn(t)) −H0(x0) −
∫ xn(t)

x0

(h0(x0) + (u− x0)h
′
0(x0))du

}

= n1/10
{
Bn(x0 + n−1/5t) − Bn(x0)

}
+

1

3!
h′′0(x0)t

3 + o(1)

and hence

(Ỹloc
n )′(t) ⇒

√
C ′(x0)W (t) +

1

3!
h′′0(x0)t

3,

again in D[−M,M ].

Now that we have identified the limiting behavior of the “driving” process Ỹloc
n (t),

and its derivative, we turn to finding a process, Ĩloc
n (t), which will serve as the invelope

process for Ỹloc
n (t).

As above, let Hn denote the empirical hazard function, and let H̃n(t) =
∫ t

0
h̃n(s)ds,

and H̃n(t) =
∫ t

0
H̃n(s)ds. Then define

Ĩ
loc
n (t) = n4/5

∫ x0+n−1/5t

x0

∫ v

x0

{
h̃n(u) − h0(x0) − (u− x0)h

′
0(x0)

}
dudv

+ Ãnt+ B̃n,

where

Ãn = n3/5
{
H̃n(x0) − Hn(x0)

}

B̃n = n4/5

{
H̃n(x0) −

∫ x0

0

Hn(v)dv

}
.

We will show that this process converges to an appropriately scaled version of I above,
and that its derivatives describe the limiting behavior of our estimators as above.

Define the vector

Z̃n(t) = (Ỹloc
n (t), (Ỹloc

n )′(t), Ĩloc
n (t), (̃Iloc

n )′(t), (̃Iloc
n )′′(t), (̃Iloc

n )′′′(t)), (7.4)

and fix M > 0. We will show that Z̃n is tight in the product space

E[−M,M ] ≡ C[−M,M ] ×D[−M,M ] × C[−M,M ]3 ×D[−M,M ]. (7.5)
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This will be done last. We first assume that Z̃n has a weak limit, and we identify its

unique limit. The two arguments together prove that Z̃n has the appropriate limiting
distribution.

Identifying the Limit of the LSE. We will first show that Ĩloc
n (t) is the invelope

of Ỹloc
n (t). That is, we show that these processes satisfy the conditions (2.11)-(2.13)

of the definition of the process I. We also argue that these conditions pass to the
limiting processes.

For condition (2.11), calculate

Ĩ
loc
n (t) − Ỹ

loc
n (t) = n4/5

∫ x0+n−1/5t

x0

H̃n(u) − Hn(u)dv + Ãnt+ B̃n

= n4/5

{
H̃n(x0 + n−1/5t) −

∫ x0+n−1/5t

0

Hn(s)ds

}
≥ 0

by (2.9).

Next, we calculate the derivatives of Ĩloc
n (t).

(̃Iloc
n )′(t) = n3/5

∫ x0+n−1/5t

x0

{
h̃n(u) − h0(x0) − (u− x0)h

′
0(x0)

}
du+ Ãn,

(̃Iloc
n )′′(t) = n2/5

{
h̃n(x0 + n−1/5t) − h0(x0) − (n−1/5t)h′0(x0)

}
,

(̃Iloc
n )′′′(t) = n1/5

{
h̃′n(x0 + n−1/5t) − h′0(x0)

}
.

Clearly, (̃Iloc
n )′′(t) is convex, and differentiable at 0. In the space E[−M,M ], these

conditions also pass to the limit. It remains to show that
∫ c

−c

{
Ĩ
loc
n (t) − Ỹ

loc
n (t)

}
d (̃Iloc

n )′′′(t) = 0.

for any choice of c > 0 such that 0 ≤ x0 − n1/5c ≤ x0 + n1/5c ≤ T . But (̃Iloc
n )′′′(t) has

changepoints only where h̃′n(x0 + n−1/5t) has changepoints. Now, let t = τ denote
such a changepoint. By our previous calculations, we have that

Ĩ
loc
n (t) − Ỹ

loc
n (t) = n4/5

{
H̃n(x0 + n−1/5t) − Yn(x0 + n−1/5t)

}
,

and hence Ĩloc
n (τ) − Ỹloc

n (τ) = 0 by (2.9) and (2.10). Hence, Ĩloc
n (t) is an invelope.

Lastly we show that on this space the conditions (2.11)-(2.13) are maintained under
limits. This is clear for conditions (2.11) and (2.12). For the last condition, we show
that the continuous mapping theorem applies. This follows since for any element
z = {z1, z2, z3, z4, z5, z6} ∈ E[−M,M ],

ψ(z) =

∫ M

−M

(z3 − z1)dz6
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is continuous in z, for z6 increasing. Since (̃Iloc
n )′′(t) is convex, we deduce that (̃Iloc

n )′′′(t)

is increasing. This shows that the only possible limit of Ĩloc
n (t) is the process I.

Now, it is easy to see that the second and third derivatives of Ĩ
loc
n evaluated at t = 0

are equal to
(
n2/5(h̃n(x0) − h0(x0))

n1/5(h̃′n(x0) − h′0(x0))

)
,

as desired. Also, recall that

Ỹ
loc
n (t) ⇒

√
C ′(x0)

∫ t

0

W (s)ds+
1

24
h′′0(x0)t

4 ≡ k1

∫ t

0

W (s)ds+ k2t
4.

Now we use the scaling properties of the process Y involved in the definition of the

“invelope process”; recall Definition 2.6. For any a, b > 0, bY (at)
d
= a3/2b

∫ t

0
W (s)ds+

a4bt4. Therefore, choose a, b so that a4b = k2, and a3/2b = k1. It follows that

Ỹ
loc
n (t) ⇒ bY (at).

Applying this re-scaling to all processes shows that

(̃Iloc
n )′′(0) ⇒ ba2I ′′(0) and (̃Iloc

n )′′′(0) ⇒ ba3I ′′′(0).

It is now straightforward to calculate the correct constants.

Tightness for the LSE. We already know that both Ỹloc
n (t) and (Ỹloc

n )′(t) are tight

in C[−M,M ] and D[−M,M ] respectively. Proposition 6.5 says that (̃Iloc
n )′′(t) and

(̃Iloc
n )′′′(t) are tight in C[−M,M ]. It remains to argue the same for (̃Iloc

n )′(t) and

Ĩloc
n (t). However, this will follow by Proposition 6.5 if we can show that both Ãn and

Ãnt+ B̃n are tight.
Let τn be the largest touchpoint smaller than x0. Using Corollary 2.4 we have

Ãn = n3/5
{
H̃n(x0) − Hn(x0)

}
− n3/5

{
H̃n(τn) − Hn(τn)

}

= n3/5

{∫ x0

τn

h̃n(u) − h0(x0) − h′0(x0)(u− x0)du

}

−n3/5

{∫ x0

τn

h0(u) − h0(x0) − h′0(x0)(u− x0)du

}

− n3/5

∫ x0

τn

d {Hn −H0} (u)

= n3/5

{∫ x0

τn

h̃n(u) − h0(x0) − h′0(x0)(u− x0)du

}

−n3/5 {h′′0(x0) + o(1)} (x0 − τn)3 − n3/5

∫ x0

τn

d {Hn −H0} (u).
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By Proposition 6.5 and Lemma 6.3 the first two terms are tight in C[−M,M ]. Ar-
guments similar to those used in the proof of Lemma 6.1 show that if b ≤ 1 then

lim sup
n→∞

P

(
sup

0≤u≤b

∣∣∣∣
∫ x0

x0−u

d {Hn −H0} (u)

∣∣∣∣ ≥M

√
b

n

)
→ 0 as M → ∞.

Since τn − x0 = Op(n
−1/5) by Lemma 6.3, this implies that Ãn is tight in D[−M,M ].

This of course implies that B̃n is tight in C[−M,M ]. This, in turn, implies that Z̃n is
tight in the space E[−M,M ]. This completes the proof of Theorem 2.7 for the LSE.

7.2. Proof of Theorem 2.7 for the MLE.

The proof here is quite similar to that of the LSE section. There are however,
several additional technical difficulties which arise.

One of the main changes is that we now need to consider two separate cases. Note
that at x0 (where h′′(x0) > 0), we have three possibilities

(1) h′0(x0) > 0 By continuity, h′0(x) > 0 in a neighborhood of x0. It follows from

the consistency of the MLE derivatives, that ĥ′n > 0 for sufficiently large n,
and hence all touch points to consider are of the “increasing” kind.

(2) h′0(x0) < 0 By the same argument, all touch points are decreasing.
(3) h′0(x0) = 0 This is the tricky case. However, since h(x0) > 0, by Corollary

3.4 we know that there is always at least one touch point which satisfies both
the nonincreasing and nondecreasing properties, the limiting process may be
“stitched” together in an appropriate manner.

Therefore it will be sufficient to prove the asymptotic results for both types of touch
points. We also note that because we work in a neighborhood of x0 such that h(x0) >

0, we may assume that ĥn is always well-defined (i.e. finite).

Nonincreasing.

Driving process for the MLE, nonincreasing case. In this case the driving
process is slightly different than that for the LSE. It is

Ŷ
loc
n,↓(t)

= n4/5h0(x0)

S0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

{
h0(u) − h0(x0) − (u− x0)h

′
0(x0)

ĥn(u)

}
Sn(u)dudv

+ n4/5h0(x0)

S0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

Sn(u)

ĥn(u)
d{H

∗
n(u) −H0(u)}dv,
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where dH∗
n(u) = Sn(u−)

Sn(u)
dHn(u). The derivative is

(Ŷloc
n,↓)

′(t) = n3/5h0(x0)

S0(x0)

∫ x0+n−1/5t

x0

{
h0(u) − h0(x0) − (u− x0)h

′
0(x0)

ĥn(u)

}
Sn(u)du

+ n3/5 h0(x0)

S0(x0)

∫ x0+n−1/5t

x0

Sn(u)

ĥn(u)
d{H

∗
n(u) −H0(u)}.

Note that by consistency of ĥn and since supt |Sn(t)− S0(t)| → 0 a.s., for any M > 0

lim
n

sup
|t|≤M

|Ŷloc
n,↓(t) − Ỹ

loc
n (t)| = lim

n
sup
|t|≤M

|(Ŷloc
n,↓)

′(t) − (Ỹloc
n )′(t)| = 0 a.s. (7.6)

Identifying the Limit for the MLE, nonincreasing case. Recall definitions
(6.8) and (6.7). The (interim) invelope here is defined by

Î
loc
n,↓(t) = n4/5h0(x0)

S0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

{
ĥn(u) − h0(x0) − (u− x0)h

′
0(x0)

ĥn(u)

}
Sn(u)dudv

+Ân,↓t+ B̂n,↓,

where

Ân,↓ = −n3/5h0(x0)

S0(x0)

{
Ĥ′

n,↓(x0) − An,↓(x0)
}

B̂n,↓ = −n4/5h0(x0)

S0(x0)

{
Ĥn,↓(x0) −

∫ x0

0

An,↓(v)dv

}
.

Next, calculate

Î
loc
n,↓(t) − Ŷ

loc
n,↓(t)

= n4/5h0(x0)

S0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

{
Sn(u)du− Sn(u)

ĥn(u)
dH∗

n(u)

}
dv + Ân,↓t+ B̂n,↓

= n4/5h0(x0)

S0(x0)

{∫ x0+n−1/5t

0

An,↓(v)dv − Ĥn,↓(x0 + n−1/5t)

}
≥ 0, (7.7)

with equality at the (nonincreasing) touchpoints of ĥn, using (2.2).

Notice that because of the presence of Sn(v) in its definition, Îloc
n,↓(t) is not three

times differentiable. We therefore define

Î
∗,loc
n,↓ (t) = n4/5h0(x0)

S0(x0)

∫ xn(t)

x0

∫ v

x0

{
ĥn(u) − h0(x0) − (u− x0)h

′
0(x0)

ĥn(u)

}
S0(u)dudv

+ Ân,↓t+ B̂n,↓,
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where, again, xn(t) = x0 + n−1/5t, and for any M > 0,

lim
n

sup
|t|≤M

|̂Iloc
n,↓(t) − Î

∗,loc
n,↓ (t)| = 0, (7.8)

due to Proposition 6.5.
Now, fix M > 0, and define

Ẑn,↓(t) = (Ŷloc
n,↓(t), (Ŷn,↓n

loc)′(t), Î∗,loc
n,↓ (t), (̂I∗,loc

n,↓ )′(t), (̂I∗,loc
n,↓ )′′(t), (̂I∗,loc

n,↓ )′′′(t)). (7.9)

We will show that Ẑn,↓(t) is tight in E[−M,M ] (defined in (7.5)). However, we

first argue that Î
∗,loc
n,↓ (t) is the invelope of Ŷloc

n,↓(t). We have already seen that these

properties pass to the limit. However, in this case, Î
∗,loc
n,↓ (t) satisfies (2.11)-(2.13)

asymptotically.

First, from (7.7) and (7.8) it follows that Î
∗,loc
n,↓ (t) satisfies invelope condition (2.11)

in the limit. Next, the derivatives of Î
∗,loc
n,↓ (t) are calculated as follows:

(̂I∗,loc
n,↓ )′(t) = n3/5h0(x0)

S0(x0)

∫ xn(t)

x0

{
ĥn(u) − h0(x0) − (u− x0)h

′
0(x0)

ĥn(u)

}
S0(u)du+ Ân,↓

(̂I∗,loc
n,↓ )′′(t) = n2/5h0(x0)

S0(x0)

{
ĥn(xn(t)) − h0(x0) − n−1/5t h′0(x0)

ĥn(xn(t))

}
S0(x0 + n−1/5t)

Due to Theorem 4.1 and Proposition 6.5, we have that

lim
n

sup
|t|≤M

∣∣∣(̂I∗,loc
n,↓ )′′(t) − n2/5

[
ĥn(x0 + n−1/5t) − h0(x0) − n−1/5t h′0(x0)

]∣∣∣ = 0, (7.10)

where n2/5[ĥn(x0 + n−1/5t)− h0(x0)− n−1/5t h′0(x0)] is convex, and hence the limit of

(̂I∗,loc
n,↓ )′′(t) will be convex.

Let Bn(t) = (h0(x0)/S0(x0)) × (S0(t)/ĥn(t)); then

B′
n(t) =

h0(x0)

S0(x0)

[
S ′

0(t)ĥn(t) − S0(t)ĥ
′
n(t)

ĥ2
n(t)

]

and dB′
n(t) =

h0(x0)

S0(x0)

[
− 2

ĥ3
n(t)

ĥ′n(t)[S ′
0(t)ĥn(t) − S0(t)ĥ

′
n(t)]dt

+
1

ĥ2
n(t)

[S ′′
0 (t)ĥn(t)]dt− S0(t)

ĥ2
n(t)

dĥ′n(t)

]
.

We may then write

(̂I∗,loc
n,↓ )′′′(t) = n1/5[ĥ′n(xn(t)) − h′0(x0)]Bn(xn(t))

+ n1/5[ĥn(xn(t)) − h0(x0) − n−1/5t h′0(x0)] × B′
n(xn(t)),
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Notice that sup|t|≤M |1−Bn(x0 +n−1/5t)| →a.s. 0, with limnB
′
n(x0 +n−1/5t) bounded.

Therefore, from Proposition 6.5 it follows

lim
n

sup
|t|≤M

∣∣∣(̂I∗,loc
n,↓ )′′′(t) − n1/5[ĥ′n(x0 + n−1/5t) − h′0(x0)]

∣∣∣ = 0, (7.11)

where n1/5[ĥ′n(x0 +n−1/5t)−h′0(x0)] is piecewise linear, with jumps at the touchpoints

of ĥn. By consistency of ĥn, we have

d(̂I∗,loc
n,↓ )′′′(t) = Bn(x0 + n−1/5t)dĝn(t)

+2[ĥ′n(x0 + n−1/5t) − h′0(x0)]B
′
n(x0 + n−1/5t)dt

+ n1/5[ĥn(x0 + n−1/5t) − h0(x0) − n−1/5t h′0(x0)]dB
′
n(x0 + n−1/5t)

=
{
Bn(x0 + n−1/5t) +O∗

p(n
−2/5)

}
dĝn(t) +O∗

p(n
−1/5)dt,

where ĝn(t) = n1/5[ĥ′n(x0 + n−1/5t)− h′0(x0)]. We say that a process Xn(t) is O∗
p(1) if

sup|t|≤M |Xn(t)| is Op(1).
Next, arguing as for the LSE, we may show that for all c > 0

0 =

∫ c

−c

(̂Iloc
n,↓(t) − Ŷ

loc
n,↓(t))dĝn(t)

and hence

∫ c

−c

(̂I∗,loc
n,↓ (t) − Ŷ

loc
n,↓(t))d(̂I

∗,loc
n,↓ )′′′(t) =

∫ c

−c

(̂I∗,loc
n,↓ (t) − Ŷ

loc
n,↓(t))d[(̂I

∗,loc
n,↓ )′′′ − ĝn](t)

+

∫ c

−c

(̂I∗,loc
n,↓ (t) − Î

loc
n,↓(t))dĝn(t) = op(1),

using Proposition 6.5,(7.8), and the fact that ĝn is increasing.

This shows that Î
∗,loc
n,↓ (t) satisfies the invelope conditions (2.11)-(2.13) asymptoti-

cally. From (7.6), it follows that Î
∗,loc
n,↓ (t) has the (appropriately re-scaled) process I

as its only possible limit. From (7.10) and (7.11), and the same re-scaling argument
as for the LSE, the limits of the MLE estimators are identified.

Tightness for the MLE, nonincreasing case. The tightness arguments here are
the same as for the LSE case, and we therefore omit the details. The only “new”
calculation is shown below.
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Let τn be the largest touchpoint smaller than x0. By (3.15) we have

−S0(x0)

h0(x0)
Ân,↓

= n3/5

{
Ĥ′

n(x0) −
∫ x0

0

Sn(u)du

}
− n3/5

{
Ĥ′

n(τn) −
∫ τn

0

Sn(u)du

}
(7.12)

= −n3/5

{∫ x0

τn

ĥn(u) − h0(u)

ĥn(u)
S0(u)du

}
+ n3/5

∫ x0

τn

1

ĥn(u)
d {Fn − F0} (u)

+n3/5

∫ x0

τn

(Sn(u) − S0(u)du)

= −n3/5

{∫ x0

τn

ĥn(u) − h0(x0) − h′0(x0)(u− x0)

ĥn(u)
S0(u)du

}

+n3/5

{∫ x0

τn

h0(u) − h0(x0) − h′0(x0)(u− x0)

ĥn(u)
S0(u)du

}

+n3/5

∫ x0

τn

1

ĥn(u)
d {Fn − F0} (u) + n3/5

∫ x0

τn

Sn(u) − S0(u)du.

Nondecreasing.

Driving process for the MLE, nondecreasing case.

Ŷ
loc
n,↑(−t) = n4/5h0(x0)

S0(x0)

∫ x0

xn(−t)

∫ x0

v

{
h0(u) − h0(x0) − (u− x0)h

′
0(x0)

ĥn(u)

}
Sn(u)dudv

+ n4/5h0(x0)

S0(x0)

∫ x0

xn(−t)

∫ x0

v

Sn(u)

ĥn(u)
d{H

∗
n(u) −H0(u)}dv.

Define

Ỹ
loc
n,↑(−t) = n4/5

∫ x0

xn(−t)

{
Hn(x0) − Hn(v) −

∫ x0

v

(h0(x0) + (u− x0)h
′
0(x0))du

}
dv.

Note that by consistency of ĥn and as supt |Sn(t) − S0(t)| → 0 a.s., we have that for
any M > 0

sup
|t|≤M

|Ŷloc
n,↑(t) − Ỹ

loc
n,↑(t)| ∨ sup

|t|≤M

|(Ŷloc
n,↑)

′(t) − (Ỹloc
n,↑)

′(t)| →a.s. 0.

Also, using the same arguments as in Subsection 7.1, we have

lim
n

Ỹ
loc
n,↑(·)

d
= lim

n
Ỹ

loc
n (·) and lim

n
(Ỹloc

n,↑)
′(·) d

= lim
n

(Ỹloc
n )′(·),

that is, they have the same weak limit.
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Identifying the Limit, MLE nondecreasing case. Recall definitions (6.10) and
(6.9). Let

Î
loc
n,↑(−t) = n4/5 h0(x0)

S0(x0)

∫ x0

xn(−t)

∫ x0

v

{
ĥn(u) − h0(x0) − (u− x0)h

′
0(x0)

ĥn(u)

}
Sn(u)dudv

+Ân,↑t+ B̂n,↑,

where

Ân,↑ = −n3/5h0(x0)

S0(x0)

{
Ĥ′

n,↑(x0) − An,↑(x0)
}

B̂n,↑ = −n4/5h0(x0)

S0(x0)

{
Ĥn,↑(x0) −

∫ x0

0

An,↑(v)dv

}
.

And we easily calculate

Î
loc
n,↑(−t) − Ŷ

loc
n,↑(−t) = n4/5h0(x0)

S0(x0)

{∫ ∞

x0−n−1/5t

An,↑(v)dv − Ĥn,↑(x0 − n−1/5t)

}
≥ 0,

with equality at the (nondecreasing) touchpoints of ĥn, using (2.3). The rest of the
proof proceeds in a similar manner. The only difference is that to prove tightness of

the process Ân,↑ we argue as (7.12), but with ηn the smallest touchpoint greater than
x0.

This completes the proof of Theorem 2.7 for the MLE.

8. Some Further Results

Here we collect several further results without proof. In particular: (i) we give
characterizations of the MLE and LSE in the presence of right-censored data, and
state the analogue of Theorem 2.7 in this case; (ii) we give characterizations of the
MLE and LSE for estimation of a bathtub-shaped (i.e. U−shaped) hazard, and again
state the analogue of Theorem 2.7.

8.1. Estimating the Hazard with Right Censoring. The model for random right
censoring is described as follows. Let (X, Y ) be two independent random variables
with respective cumulative distribution functions F and G. Let h denote the hazard
function for the random variable X. The data we observe is described as (T,∆),
where T = min{X, Y } and ∆ = 1{X ≤ Y }. Observing i.i.d. observations from this
model, the likelihood is (proportional to)

Πn
i=1h(Ti)

∆ie−H(Ti).

Let 0 ≤ T(1) ≤ T(1) ≤ · · · ≤ T(n) denote the ordered Tj ’s, and let ∆(1),∆(2), · · · ,∆(n)

denote the corresponding ∆’s. The same difficulties with the largest observation occur
in this problem as with uncensored data if ∆(n) = 1. That is, if ∆(n) = 1, the MLE

is found by minimizing ϕn(h) over convex functions on [0, T(n)) and ĥn(x) = ∞ for
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x ≥ T(n). However, if ∆(n) = 0, then the censoring of the largest observation gives us
the necessary control over the hazard function and the MLE is found by minimizing
ϕn(h) over convex functions on [0, T(n)]; in this case no information is given for the

values of ĥn(x) for x > T(n). Thus we define the MLE as the minimizer of the criterion
function

ϕn(h) =

∫ ∞

0

H(t)dFT
n(t) −

∫ ∞

0

log h(t)dG̃n(t),

over the class Kcens
+ , where

F
T
n (t) =

1

n

n∑

i=1

I[0,t](Ti), Gn(t) =
1

n

n∑

i=1

∆iI[0,t](Ti),

and G̃n(t) =
1

n

n−1∑

i=1

∆(i)I[0,t](T(i)),

and Kcens
+ is the space of convex functions on [0, T(n)) if ∆(n) = 1 and [0, T(n)] if

∆(n) = 0.

Note that Gn is the subdistribution function of the uncensored Ti’s, and G̃n is the
version of Gn which deletes T(n) if it corresponds to an uncensored observation (with
∆(n) = 1). Lastly, let HNA

n denote the Nelson-Aalen estimator of the (cumulative)
hazard function H ,

H
NA
n (t) =

∫

[0,t]

1

1 − FT
n (s−)

dGn(s).

Fix a constant M > 0 with P (T > M) > 0. The LSE of h is the minimizer of

ψn(h) =
1

2

∫ M

0

h2(t)dt−
∫ M

0

h(t)dHNA
n (t).

First we state the generalizations of Lemmas 2.1 and 2.3 to this censored version of
the problem.

Lemma 8.1. Let {τi, i = 1, . . . , k} denote all of the change points of ĥn, where ĥn is

non-increasing. Let {ηj, j = 1, . . . , m} denote all of the change points of ĥn, where

ĥn is non-decreasing.
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Then ĥn minimizes ϕn over Kcens
+ if and only if:

∫ x

0

x− t

ĥn(t)
dG̃n(t) ≤

∫ x

0

∫ t

0

(1 − F
T
n )(s)dsdt, (8.1)

for all x ≥ 0 with equality at τi for i = 1, . . . , k;∫ ∞

x

t− x

ĥn(t)
dG̃n(t) ≤

∫ ∞

x

∫ ∞

t

(1 − F
T
n )(s)dsdt, (8.2)

for all x ≥ 0 with equality at ηj for j = 1, . . . , m;∫ ∞

0

1

ĥn(t)
dG̃n(t) ≤

∫ ∞

0

(1 − F
T
n )(t)dt, (8.3)

∫ ∞

0

Ĥn(t)dFT
n (t) =

1

n

n−1∑

i=1

∆(i). (8.4)

Moreover, the minimizer ĥn satisfies
∫ x

0

ĥn(t)(1 − F
T
n )(t)dt = G̃n(x), (8.5)

for x ∈ {τ1, . . . , τk, η1, . . . , ηm}.

Lemma 8.2. Let YNA
n (t) =

∫ t

0
HNA

n (s)ds. The function h̃n minimizes ψn(h) over KM

if and only if it satisfies

H̃n(M) = H
NA
n (M), (8.6)

H̃n(M) = Y
NA
n (M), (8.7)

H̃n(t) ≥ Y
NA
n (t) for all t ∈ [0,M ], (8.8)

∫ T

0

(H̃n − Y
NA
n )(t)d h̃′n(t) = 0. (8.9)

The last statement is the same as: H̃n(τ) = YNA
n (τ) for all changes of slope τ of h̃n.

The Maximum Likelihood and Least Squares estimators continue to be consistent
on the interior of the support of F0 in this setting of right-censored data. Moreover,
Theorem 2.7 also holds with some changes in the constants:

Theorem 8.3. Suppose that h0 is convex, and that the censoring distribution function
G0, and x0 ∈ (0,M) satisfy 0 < h0(x0) < ∞, h′′0(x0) > 0, G0(x0) < 1, and that h

′′

0(·)
is continuous in a neighborhood of x0. Then the nonparametric MLE and LSE are

asymptotically equivalent: for h̄n = ĥn or h̃n, then
(
n2/5(h̄n(x0) − h0(x0))
n1/5(h̄′n(x0) − h′0(x0))

)
→d

(
c1 I(2)(0)
c2 I(3)(0)

)
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where I(2)(0) and I(3)(0) are the second and third derivatives at 0 of the invelope of

Y (t) ≡
∫ t

0
W (s)ds+ t4, and where

c1 =

(
h2

0(x0)h
′′
0(x0)

24S2
0(x0)(1 −G0(x0))2

)1/5

, c2 =

(
h0(x0)h

′′
0(x0)

3

243S0(x0)(1 −G0(x0))

)1/5

.

8.2. Characterizations of the MLE and LSE of a U-Shaped hazard. If we
do not insist on convexity of the hazard function h, but still assume that the hazard
is bathtub (or U-shaped), then we find ourselves in the same framework as Bray,
Crawford and Proschan (1967b) or Banerjee (2007). In this section we derive the
characterizations for the MLE and LSE, as in Lemmas 2.1 and 2.3, but under the
“pure” bathtub assumptions.

We first consider the maximum likelihood problem. Here, we must first find the
MLE constrained to having an antimode at t0, and then maximize over all possible
values of t0 to find the overall MLE. Notice that the likelihood for any t0 < X(n)

L(h) =

n∏

i=1

h(Xi) exp {−H(Xi)} ,

can be made arbitrarily large by increasing the value of h(X(n)). As before, we set
h(X(n)) in these cases to be arbitrarily large, and maximize the modified likelihood

Lmod(h) =

n−1∏

i=1

h(Xi) exp {−H(Xi)} × exp
{
−H(X(n))

}
.

Hence our goal will be to minimize the criterion function

ϕn(h) =

∫ ∞

0

{
H(t) − log h(t)I(t 6= X(n))

}
dFn(t).

Let U+ denote the space of positive bathtub shaped hazard functions defined on
[0, X(n)], and U+(t0) denote those functions in U+ that have an antimode at t0. To
find the MLE, we will therefore minimize ϕn over h ∈ U+(t0) and then minimize this
over t0. We need only consider t0 < X(n).

Lemma 8.4. The constrained MLE over U+(t0) exists and is unique. It is a piecewise
constant, upper semi-continuous function, with jumps occurring only at data points.

Also, if t0 does not fall on a data point, then the MLE ĥn(t0) = 0. Moreover, the

constrained MLE, ĥn, is characterized by the following set of equations.

Let {τi, i = 1, . . . , k} denote all of the change points of ĥn, where ĥn is non-

increasing. Let {ηj , j = 1, . . . , m} denote all of the change points of ĥn, where ĥn

is non-decreasing. Then ĥn minimizes ϕn over the space of bathtub functions with
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antimode at t0 if and only if:
∫

[0,∞)

Ĥn(t)dFn(t) = 1 − 1/n, (8.10)

∫

[0,∞)

1

ĥn(t)
dFn(t) ≤

∫ ∞

0

tdFn(t) =

∫ ∞

0

Sn(t)dt, (8.11)

∫

[0,x]

1

ĥn(t)
dFn(t) ≤ x−

∫ x

0

(x− t)dFn(t) =

∫ x

0

Sn(u)du, ∀x < t0 (8.12)

∫

[x,∞)

1

ĥn(t)
dFn(t) ≤

∫ ∞

x

(t− x)dFn(t) =

∫ ∞

x

Sn(u)du, ∀x > t0 (8.13)

with equality in (8.12) at x = τi, i = 1, . . . , k, and equality in (8.13) at x = ηj for

j = 1, . . . , m. Moreover, the minimizer ĥn satisfies
∫ τi

0

ĥn(t)Sn(t)dt = Fn(τi), i = 1, . . . , k, (8.14)

∫ ηj

0

ĥn(t)Sn(t)dt = Fn(η−j ) j = 1, . . . , m. (8.15)

The unconstrained MLE over U+ is found by maximizing the likelihood over all
possible antimodes t0, with t0 falling in between the data points. Indeed, it is sufficient
to consider the n choices of intervals for t0: [0, X(1)), (X(1), X(2)), . . . , (X(n−1), X(n)).

Remark 8.5. We note that (8.10) was also observed to hold by Grenander (1956),
page 143.

Notice that (8.13) implies that ĥn(X(n)) = ∞. Also, if the values τi, ηj are known,

then (2.6) may be used to calculate the values of ĥn directly. Since the MLE is
piecewise constant, let us denote these constants as h1, h2, . . ., and we therefore obtain
that

h1 =
Fn(τ1)∫ τ1

0
Sn(t)dt

, h2 =
Fn(τ2) − Fn(τ1)∫ τ2

τ1
Sn(t)dt

,

and so forth. This is directly related to the more well-known calculation of the MLE
via least concave majorants (see e.g. Robertson et al. (1988), page 342).

The least squares estimator is found by minimizing the criterion function

ψn(h) =
1

2

∫ T

0

h2dt−
∫ T

0

hdHn(t).

We again adopt the approach of minimizing first over the space of bathtub-shaped
functions on [0, T ] with antimode at t0, UT (t0), and then minimizing over the possi-
ble choices of antimode. We will denote the space of non-negative bathtub-shaped
functions on [0, T ] as UT .
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Lemma 8.6. The constrained LSE over U+(t0) exists and is unique. It is a piecewise
constant, upper semi-continuous function, with jumps occurring only at data points.

Also, when t0 does not fall on a data point, then the LSE h̃n(t0) = 0.

The function h̃n minimizes ψn(h) over UT (t0), for t0 not falling on a data point, if
and only if it satisfies,

H̃n(T ) = Hn(T ), (8.16)

H̃n(t) ≥ Hn(t), for all 0 ≤ t < t0 (8.17)

H̃n(t) ≤ Hn(t), for all t0 < t ≤ T (8.18)
∫ T

0

(H̃n − Hn)(t)dh̃n(t) = 0 (8.19)

for some t0 ∈ [0, T ]. The last statement is the same as: H̃n(τ) = Hn(τ) for all jumps

τ of h̃n. Thus h̃n is the (left) derivative of the least concave majorant of Hn on [0, t0],
and the (right) derivative of the greatest convex minorant of Hn on (t0, T ].

To find the LSE over UT , we minimize ψn over all possible choices of t0 ∈ [0, X(n)),
where t0 does not equal a data point. Indeed, it is sufficient to consider the N choices
of intervals for t0: [0, X(1)), (X(1), X(2)), . . . , (X(N−1), X(N)) and (X(N), T ), where X(N)

is the largest data point less than or equal to T (if X(N) = T then (X(N), T ) is empty).

The maximum likelihood and least squares estimators of bathtub-shaped hazards
continue to be consistent on the interior of the support of F0 assuming that the
true hazard, h0, is also bathtub-shaped. Moreover, the results of Prakasa Rao (1970)
continue to hold with only a minor adjustment to the constants (as noted by Banerjee
(2007)):

Theorem 8.7. Suppose that h0 is bathtub shaped and that x0 ∈ (0,∞) satisfy 0 <
h0(x0) < ∞, h′0(x0) 6= 0, and h′0 is continuous in a neighborhood of x0. Then the

nonparametric MLE and LSE are equivalent: if h̄n = ĥn or h̃n, then

n1/3(h̄n(x0) − h0(x0)) →d c1Z

where Z is the (left)-derivative of the greatest convex minorant of W (h)+h2 at 0 where
W (h) is a two-sided Brownian motion started from 0 and where
c1 = (h0(x0)|h′0(x0)|/(2(1 − F0(x0))))

1/3.

8.3. Proofs of Characterization Lemmas.

Proof of Lemma 8.4. Our goal is first to minimize the function ϕn over the space of
positive bathtub-shaped functions on [0, X(n)] with an antimode at t0. We will do
this in a series of steps: functional form, characterization, existence and uniqueness
last.
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Suppose then that ĥn is known for all the data points, X(1), X(2), . . . , X(n−1). Then

to maximize the likelihood we must minimize the integral Ĥn(X(i)) for all i = 1, . . . , n.
This is achieved by extending h(X(i)), i = 1, . . . , n− 1 to the entire domain [0, X(n))

in such a way so that ĥn is piecewise constant and upper semi-continuous. It follows
that if a jump occurs, it must do so at a data point. In addition, if t0 6= X(j), for

some j, then clearly we need ĥn(t0) = 0 to minimize Ĥn.
Next we consider the characterization (8.10)-(8.13). Notice that (8.13) implies that

0 ≤ 1

nĥn(X(n))
=

∫

[X(n),∞)

1

ĥn(t)
dFn(t) ≤

∫ ∞

X(n)

Sn(u)du = 0.

This implies that ĥn(X(n)) = ∞, as desired. Also, this implies that (8.13) may be
re-written as

∫

[x,X(n))

1

ĥn(t)
dFn(t) ≤

∫ X(n)

x

Sn(u)du (8.20)

Consider then any nonnegative convex function h in U+(t0). It follows that there
exists a nonnegative constant a, and nonnegative measures ν and µ, such that

h(t) = a+

∫

[0,t0)

I(t ≤ x)dν(x) +

∫

(t0,∞)

I(t ≥ x)dµ(x). (8.21)

For any function ĥn in U+(t0) we calculate

ϕn(h) − ϕn(ĥn) ≥
∫

[0,∞)

{
H(t) − Ĥn(t) +

(
1 − h(t)

ĥn(t)

)
I(t 6= X(n))

}
dFn(t)

since − log x ≥ 1−x. Plugging in the explicit form of h from above, we find that the
right hand side is equal to

a

{∫

[0,∞)

(
t− 1

ĥn(t)
I(t 6= X(n))

)
dFn(t)

}
+

{
n− 1

n
−
∫

[0,∞)

Ĥn(t)dFn(t)

}

+

∫

[0,t0)

{∫ x

0

Sn(t)dt−
∫

[0,x]

1

ĥn(t)
I(t 6= X(n))dFn(t)

}
dν(x)

+

∫

(t0,∞)

{∫ ∞

x

Sn(t)dt−
∫

[x,∞)

1

ĥn(t)
I(t 6= X(n))dFn(t)

}
dµ(x).

This is nonnegative if ĥn is a function which satisfies conditions (8.10)-(8.13), and
hence also (8.20). We also note that in (8.21), we could replace the decomposition
functions I(t ≤ x) with I(t < x) and similarly for the increasing elbow functions (we
could indeed take any combination thereof). We note, without going into the details,

that these different decompositions also yield that ϕ(h) − ϕ(ĥn) ≥ 0 by an identical
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argument, for any ĥn satisfying (8.10)-(8.13). It follows that these conditions are
sufficient to describe a minimizer of ϕn over U+(t0).

We next show that the conditions are necessary. To do this, we first define the
directional derivative

∂γϕn(h) ≡ lim
ǫ→0

ϕn(h+ ǫγ) − ϕn(h)

ǫ
=

∫ ∞

0

{
Γ(t) − γ(t)

h(t)
I(t 6= X(n))

}
dFn(t).

If ĥn minimizes ϕn, then for any γ such that ĥn + ǫγ is in U+(t0) for sufficiently small

ǫ we must have ∂γϕn(ĥn) ≥ 0. If, however, ĥn ± ǫγ is in U+(t0) for sufficiently small

ǫ then, ∂γϕn(ĥn) = 0. Choosing, respectively, γ(t) ≡ 1, I(t ≤ x) for x < t0, I(t ≥ x)

for x > t0 then ĥn + ǫγ is in U+(t0), and we obtain the inequalities (8.11)-(8.13).

To obtain the equalities, we note that ĥn ± γ is in U+(t0) for γ = ĥn, I(t ≤ τi) with
i = 1, . . . , k and I(t ≥ ηj) for j = 1, . . . , m. These give (8.10) and the equalities in
(8.12) and (8.13).

Lastly, we prove (8.14) and (8.15). For any τi, define

γ(t) =

{
ĥn(t) for t ∈ [0, τi]
0 otherwise.

Since (1 ± ǫ)γ is also in U+(t0), it follows that ∂γϕn(ĥn) = 0 and hence

0 =

{∫ τi

0

Ĥn(t)dFn(t) − Fn(τi) + Ĥn(τi)Sn(τi)

}
.

Applying Fubini to the first term on the right-hand side gives (8.14) for x = τi. (8.15)
is obtained in a similar manner, but using

γ(t) =

{
0 for t ∈ [0, ηj)

ĥn(t) otherwise.

Thus,

0 =

∫

(ηj ,∞)

Ĥn(t)dFn(t) − Ĥn(ηj)Sn(ηj) − (1 − 1

n
− Fn(η−j ))

Fubini
=

∫ ∞

ηj

ĥn(s)Sn(s)ds− (1 − 1

n
) + Fn(η−j )

(8.10)
= −

∫ ηj

0

ĥn(s)Sn(s)ds+ Fn(η−j ).

If we adopt the bounded approach (i.e. assume that h ≤M), then existence of the
MLE is immediate. As we did not do this, a little more fiddling is necessary. Because
the MLE must be piecewise constant and upper semi-continuous, it is enough to find
the MLE only on the domain [X(1), X(n−1)]. If we can show that we can reduce our
search to functions bounded on this domain, which is a compact set, then existence
will follow because the criterion function ϕn is convex. Also, ϕn is strictly convex on
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the data points X(1), . . . , X(n−1), and because of the functional form of the constrained
MLE, this gives us uniqueness of the entire function.

Recall that the minimizer must satisfy (8.10), and hence we may reduce our search
to functions which satisfy this condition. For any such h, write h = h+ + h−, where
h+ is increasing and h− is decreasing. It follows that for any x

1 ≥
∫ ∞

0

H(t)dFn(t) =

∫ ∞

0

h(t)Sn(t)dt ≥ h−(x)

∫ x

0

Sn(t)dt.

A similar bound for h+ yields

h(x) ≤ 1∫ x

0
Sn(t)dt

+
1∫∞

x
Sn(t)dt

≡Mn(x)

for all x in (0, X(n)). Thus we know that h(x) must be bounded for x ∈ [X(1), X(n−1)],
as desired.

Lastly, we address the question of finding the unconstrained MLE. To do this, we
need to check the likelihood evaluated at all of the constrained MLEs with antimode
at t0. We claim that we can reduce the search to those t0 which do not fall on a
data point, and because of the functional form of the constrained MLE, we need
only check the intervals [0, X(1)), (X(1), X(2)), . . . , (X(n−1), X(n)). This is not difficult

to see. Suppose that t0 = X(j), for some j 6= n, and the resulting MLE is ĥj
n.

Then the likelihood can be increased by setting ĥj
n = 0 on either (X(j−1), X(j)) or

(X(j), X(j+1)). Therefore, the unconstrained MLE cannot have an antimode falling on
a data point. �

Proof of Lemma 8.6. We begin by showing that the LSE must be piecewise constant
and upper semi-continuous. Since we are minimizing the criterion function

ϕ(h) =

∫ T

0

h2dt− 2

∫ T

0

hdHn(t),

over the space of U -shaped functions h. Suppose then that h and g are two bathtub
shaped functions such that h(Xi) = g(Xi) on all the data points. Then ϕ(h) and
ϕ(g) differ only in the value of the first term. Therefore, if h is the smallest possible
positive bathtub shaped function for x 6= Xi, then it will have a smaller criterion
function than g. This will tell us the shape of the minimizer.

First of all, clearly h needs to be piecewise constant. Next, suppose then that for
some m, h is decreasing before X(m) and increasing after X(m+1), then the smallest
h we can pick is zero on (X(m), X(m+1)). Also, this implies that h should be left-
continuous before X(m) and right-increasing after X(m+1). Note that h will actually
never be equal to zero on any of the observations points this way.

This shows that the overall LSE will have an antimode which does not fall on a
data point. Therefore, we consider constrained LSEs with antimodes in between the
data.
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We next show that the conditions (8.16)-(8.19) are sufficient. That is, we show that
any function which satisfies the conditions has a smaller criterion function than any

other function in U+(t0). Suppose then that h̃n satisfies (8.16)-(8.19), and consider
any h ∈ U+(t0). As before, h may be decomposed as

h(t) = a +

∫ t0

0

I(t ≤ x)dν(x) +

∫ T

t0

I(t ≥ x)dµ(x).

The inequalities in I(t ≤ x) may be replaced with strict inequalities, and the proof
will be the same. We calculate

ϕ(h) − ϕ(h̃n) =
1

2

∫ T

0

(h− h̃n)2dt+

∫ T

0

(h− h̃n)d(H̃n − Hn)

≥
∫ T

0

(h− h̃n)d(H̃n − Hn)

= (h− h̃n)(T )(H̃n − Hn)(T ) −
∫ T

0

(H̃n − Hn)d(h− h̃n)

(8.16),(8.19)
= −

∫ T

0

(H̃n − Hn)dh

=

∫ t0

0

(H̃n − Hn)(x)dν(x) −
∫ T

t0

(H̃n − Hn)(x)dµ(x)

(8.17),(8.18)

≥ 0.

This argument shows that the conditions (8.16)-(8.19) are sufficient to describe the
LSE. It also allows us to reduce our search to those functions, which in particular
satisfy condition (8.16). Our next goal is to show that that the LSE over UT (t0)
exists and is unique. This will follow if we can show that we can reduce our search
to bounded functions on [X(1), X(N)] (arguing as for the MLE), since the criterion
function ψn is stricly convex. Here we let N denote the largest integer such that
X(N) ≤ T.

Therefore consider an h such that H(T ) = Hn(T ). Note that we may write h =
h+ + h−, where h+ is increasing and h− is decreasing. It follows that for all x

Hn(T ) ≥
∫ x

0
h−(t)dt ≥ h−(x)x

Hn(T ) ≥
∫ T

x
h+(t)dt ≥ h+(x)(T − x).

Hence,

h(x) ≤ Hn(T )

{
1

x
+

1

T − x

}
.

It follows that h must be bounded on the set [X(1), X(N)], as required.



62 HANNA K. JANKOWSKI AND JON A. WELLNER

Next, we show that the conditions (8.16)-(8.19) are necessary. The proof as, always,
depends on the directional derivative. In this case, we may calculate it as

∇gϕ(h) =

∫ T

0

ghdt−
∫ T

0

gdHn(t)

=

∫ T

0

gd(H − Hn)(t)

= g(T )(H − Hn)(T ) −
∫ T

0

(H − Hn)(t)dg(t).

The next question to ask is which basis functions can we add to h, and still keep it
monotone. The answer is I(t ≤ x) for x ∈ [0, t0), and I(t ≥ x) for x ∈ (t0, T ], as well

as γ(t) = 1, I(t < ηj), I(t > τi). For these choices of γ, we must have ∇γϕ(h̃n) ≥ 0.
This yields the inequalities

• H̃n(x) − Hn(x) ≥ 0 for x ∈ [0, t0)

• (H̃n(T ) − Hn(T )) − (H̃n(x) − Hn(x)) ≥ 0 for x ∈ (t0, T ]

• (H̃n(T ) − Hn(T )) ≥ 0

• (H̃n(ηj) − Hn(ηj)) ≥ 0

• (H̃n(T ) − Hn(T )) − (H̃n(τi) − Hn(τi)) ≥ 0.

We also ask which which basis functions can we add and subtract to h̃n, and still keep

it monotone. The answer is I(t ≤ τi), I(t ≥ ηj) and h̃n resulting in the equalities

• H̃n(τi) − Hn(τi) = 0

• (H̃n(T ) − Hn(T )) − (H̃n(ηj) − Hn(ηj)) = 0

• h̃n(T )(H̃n − Hn)(T ) −
∫ T

0
(H̃n − Hn)(t)dh̃n(t) = 0.

To complete the proof it remains to show that H̃n(T ) = Hn(T ). However, since

h̃n(t0) = 0, it must be that H̃n(η1) = H̃n(τk). From the inequalities for η1, we

have that H̃n(η1) ≥ Hn(η1). But H̃n(η1) = H̃n(τk) = Hn(τk), and hence we have

Hn(η1) ≥ Hn(τk) = H̃n(η1) ≥ Hn(η1). It follows that H̃n(η1) = Hn(η1), and plugging
this into the equality for η1 yields the result. Therefore, we obtain the necessity of
the conditions. �

9. Estimating the Rate of a Poisson Process.

Let {N(t) : 0 ≤ t ≤ T} be a Poisson process with rate function λ(t) and cumulative
intensity function (or mean function) Λ(t). We assume that λ is convex on [0, T ].
Denote the measure of the Poisson process (on [0,T]) as P λ if the rate function is λ,
and P is λ ≡ 1. The Radon-Nikodym derivative of P λ with respect to P is

dP λ

dP
= Πλ(τi)e

−Λ(T ),
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where the product is taken over all arrival times of N(t) on [0, T ]. Hence, the maximum
likelihood estimator of λ(t) is the function which minimizes the negative log-likelihood
given by

ϕ(λ) = −
∫ T

0

log λ(t)dN(t) +

∫ T

0

λ(t)dt. (9.1)

We minimize this over KT , the set of all nonegative convex functions on [0, T ]. The
least squares estimator is found by minimizing

ψ(λ) =
1

2

∫ T

0

λ2(t)dt−
∫ T

0

λ(t)dN(t) (9.2)

over KT . Using the same arguments as in the previous sections, we may show that
both of these estimators exist and are unique. Here are versions of the characterization
Lemmas 2.1 and 2.3 for this Poisson process version of the problem.

Lemma 9.1 (Characterization of Poisson MLE). Let {τi, i = 1, . . . , k} denote all of

the change points of λ̂, where λ̂ is non-increasing. Let {ηj, j = 1, . . . , m} denote all

of the change points of λ̂, where λ̂ is non-decreasing.

Then λ̂ minimizes ϕ over KT if and only if the following conditions hold:

∫ x

0

x− t

λ̂(t)
dN(t) ≤ x2

2
(9.3)

for all x ≥ 0 with equality at τi for i = 1, . . . , k;
∫ T

x

t− x

λ̂(t)
dN(t) ≤ (T − x)2

2
(9.4)

for all x ≥ 0 with equality at ηj for j = 1, . . . , m;
∫ T

0

1

λ̂(t)
dN(t) ≤ T ; (9.5)

Λ̂n(T ) = N(T ). (9.6)

Moreover,

Λ̂(x) = N(x) for x = τi, ηj i = 1, . . . , k, j = 1, . . . , m. (9.7)

Let Y(t) ≡
∫ t

0
N(s)ds, and L̃(t) =

∫ t

0
Λ̃(s)ds.
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Lemma 9.2 (Characterization of Poisson LSE). The function λ̃ minimizes ψ(λ) over
KT if and only if it satisfies

Λ̃(T ) = N(T ), (9.8)

L̃(T ) = Y(T ), (9.9)

L̃(t) ≥ Y(t) for all t ∈ [0, T ], (9.10)
∫ T

0

(L̃ − Yn)(t)d λ̃′(t) = 0. (9.11)

The last statement is the same as: L̃(τ) = Y(τ) for all changes of slope τ of λ̃.

To study the asymptotics of these estimators, assume that we observe n indepen-
dent and identically distributed Poisson processes {Ni(·)}n

i=1 with the same distri-
bution as N above. Let Cn(·) denote the (pointwise) average of these. Here, the

maximum likelihood estimator of λ is the function λ̂n which minimizes

ϕ(λ) = −
∫ T

0

log λ(t)dCn(t) +

∫ T

0

λ(t)dt.

The least squares estimator, λ̃n, is found by minimizing

ψ(λ) =
1

2

∫ T

0

λ2(t)dt−
∫ T

0

λ(t)dCn(t)

over KT . The characterization is of course the same, except with N replaced by Cn in
Lemmas 9.1 and 9.2. Let λ0 denote the true rate function and assume that Λ0(T ) <

∞. Then the LSE λ̃n is consistent: λ̃n(t) converges to λ0(t) for t ∈ (0, T ) with
probability one. Also, for all δ > 0

sup
t∈[δ,T−δ]

|λ̃n(t) − λ0(t)| →a.s. 0.

The same is true of the MLE λ̂n. Lastly, their asymptotics may again be described
in terms of the invelope as for hazard estimators:

Theorem 9.3. Suppose that λ0 is convex and that x0 is a point such that 0 < λ(x0) <
∞, λ′′0(x0) > 0, and that λ

′′

0(·) is continuous in a neighborhood of x0 (also that x0 < T
for the LSE). Then the nonparametric maximum likelihood estimator and least squares

estimator are asymptotically equivalent in the following sense: if λ̄n = λ̂n or λ̃n, then

(
n2/5(λ̄n(x0) − λ0(x0))
n1/5(λ̄′n(x0) − λ′0(x0))

)
→d

(
c1 I(2)(0)
c2 I(3)(0)

)
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where I(2)(0) and I(3)(0) are the second and third derivatives at 0 of the invelope of

Y (t) ≡
∫ t

0
W (s)ds+ t4, and where

c1 =

(
λ2

0(x0)λ
′′
0(x0)

24

)1/5

, c2 =

(
λ0(x0)λ

′′
0(x0)

3

243

)1/5

.

10. Consistency of antimode and (local) inverse hazards

The following results are stated for the convex hazard estimation problem. How-
ever, they remain valid for both the hazard under right censoring, and for the Poisson
intensity estimators.

Theorem 10.1. In the case of the LSE let S = [0, T ], while for the MLE let S =
supp f0. Suppose that h0 has a unique minimum located in S◦. Then the sample
antimode converges in probability to the true antimode. That is

argmin ĥn →p argminh0,

and the same holds for the LSE.

Proof. Suppose that h0 has a unique minimum in S◦. Then there exists a compact
set K = [a, b] ⊂ (0, T )◦ such that infS h0 = infK h0.

We also have that for all x ∈ K, and any functions f, g.

inf
x∈K

f(x) ≤ f(x) = f(x) − g(x) + g(x)

≤ sup
x∈K

|f(x) − g(x)| + g(x).

It follows that

inf
x∈K

f(x) − inf
x∈K

g(x) ≤ sup
x∈K

|f(x) − g(x)|.

By symmetry of the argument, it follows

| inf
x∈K

f(x) − inf
x∈K

g(x)| ≤ sup
x∈K

|f(x) − g(x)|. (10.1)

There exists a δ > 0 such that

inf
x∈[0,a]

h0(x) = h0(a) ≥ δ + inf h0(x).

There also exists an n0 > 0 such that for all n ≥ n0

|ĥn(a) − h0(a)| < δ/16 < δ/2, and |ĥn(m) − h0(m)| ≤ δ/16

where m = argminh0(x). Therefore,

ĥn(a) > h0(a) − δ/2

≥ δ/2 + h0(m).
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But then for all n ≥ n0

h0(m) + δ/4 ≤ h0(a)

⇒ ĥn(m) − δ/16 + δ/4 ≤ ĥn(a) + δ/16

⇒ ĥn(m) + δ/8 ≤ ĥn(a).

By a similar argument ĥn(m) + δ/8 ≤ ĥn(b), and hence argmin ĥn(x) ∈ K. By 10.1

and consistency of ĥn, it hence follows that

inf ĥn(x) → inf h0(x) a.s.

The same argument may be used to show that

inf
F
ĥn(x) → inf

F
h0(x) a.s.,

for any closed set F ⊂ S◦.

We next show that m̂n = argminĥn converges to m a.s. To do this, consider any
open set G such that m ∈ G. Since m is unique, there exists a δ > 0 such that

inf h0(x) + δ ≤ inf
x∈Gc

h0(x).

It therefore follows that there exists an n0 such that for all n ≥ n0

inf ĥn(x) − δ/4 + δ ≤ inf
x∈Gc

ĥn(x) + δ/4.

This of course implies that m̂n ∈ G for all n ≥ n0. �

Motivated by the notion of burn-in (see e.g. Lynn and Singpurwalla (1997)) and
earthquake alerts (e.g. Ellis (1985); La Rocca (2008)), we also consider convergence of
estimators of the (local) inverse of the hazard function h0. That is, if h0 is decreasing
near zero, we may be interested in estimating the first time that h0 hits a level α.
Likewise, if h0 is increasing on some interval, we may be interested in the last time
that h0 hits a level α.

In what follows, we discuss the MLE ĥn, however, the statements and results are

equally valid for the LSE h̃n. Also, to simplify notation, we assume that h0 is strictly
decreasing, and hence we study the estimation of h−1

0 (α). The results are clearly valid
in the more general setting.

Proposition 10.2. Let x0 = h−1
0 (α). Suppose that x0 ∈ S◦, and that h0 is strictly

decreasing near x0. Then x̂n = ĥ−1
n (α) converges to x0 almost surely.

Proof. We first argue that the estimator x̂n makes sense, at least for large enough n.
This follows from the consistency of the derivatives of the estimators (Corollary 4.8),
and convexity.

Now, fix δ > 0, and note that there exists an ǫ > 0 such that

h0(x0 − δ) ≥ α + ǫ ≥ α− ǫ ≥ h0(x0 + δ).
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From consistency of ĥn, there exists an n0 = n0(ω) such that for all n ≥ n0 and all ω
in a set with probability 1

ĥn(x0 − δ) ≥ h0(x0 − δ) − ǫ/2

≥ α + ǫ/2,

and similarly

α− ǫ/2 ≥ ĥn(x0 + δ),

almost surely. Therefore,

ĥn(x0 − δ) − ǫ/2 ≥ α ≥ ĥn(x0 + δ) + ǫ/2.

Hence, for any δ > 0, x̂n ∈ (x0 − δ, x0 + δ) almost surely, proving the result. �
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