
COMPUTATION OF NONPARAMETRIC CONVEX HAZARD
ESTIMATORS VIA PROFILE METHODS

TECHNICAL REPORT 542
DEPARTMENT OF STATISTICS, UNIVERSITY OF WASHINGTON

HANNA K. JANKOWSKI, JON A. WELLNER

Abstract. In this paper we develop an algorithm to find the maximum likelihood
estimator of a convex hazard function. The maximization is done in two steps.
First, we use the support reduction algorithm of [GJW1] to find the profile likelihood
over a constrained space. We next show that (−1) times the profile likelihood is
bathtub-shaped in the parameters, and use a bisection algorithm to find the overall
maximizer. We use the same approach to find a least squares estimator of a convex
hazard rate. Simulations and data examples are also given.

1. Introduction

Suppose we observe X1, . . . , Xn i.i.d. with density f . The Xi’s are assumed to
represent lifetime data: failure of a material or machine, death, an earthquake, or
infection by a disease. It is therefore natural to assume that f is concentrated on
[0,∞). Of key interest to practitioners is the hazard (or failure) rate h(t) given by
the ratio f(t)/(1− F (t)). Heuristically, h(t)dt is the probability that, given survival
until time t, the event will occur in the next dt amount of time. The hazard function
is also known as the force of mortality in actuarial science, or the intensity function
in extreme value theory.

In reliability theory and demography it is quite natural to assume that the haz-
ard rate is bathtub or U-shaped: that is, it is first decreasing1 and then increasing.
Heuristically, bathtub shaped hazards correspond to lifetime distributions with high
initial hazard (or infant mortality), lower and often rather constant hazard during the
middle of life, and then increasing hazard of failure (or wear out) as aging proceeds.
The observed failure rate is then a mixture of these three types of failure, as seen in
Figure 1. We will say that a bathtub shaped function h has an antimode at a if it
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is non-increasing on [0, a] and non-decreasing on [a,∞]. In particular, the antimode
need not be a unique minimum.

Nonparametric estimators of hazard rates have received considerable interest in the
literature, beginning with the work of [Gre] who considered the maximum likelihood
estimator (MLE) of an increasing hazard rate. The MLE in this case may be found
exactly by using either a graphical representation (via derivatives of the concave
majorant of the time on test statistic) or the pool-adjacent violators algorithm. Later,
[BCP] extended this work to the case of a general U-shaped rate function. It is well-
known that these estimators result in a piecewise constant function and converge
(under certain natural assumptions) at a rate of n1/3 (cf. [PR]).

Time

Failure Rate

Figure 1. Example when the observed failure (bold) is equal to the mixture of the infant
mortality (short-dashed), constant, and wear-out (long-dashed) failure rates.

To find the MLE, ĥn, we first consider the likelihood written in term of the hazard
rate

Lik(h) =
n∏
i=1

h(Xi) exp

{
−
∫ Xi

0

h(t)dt

}
. (1.1)

The goal is to find the convex positive function h which maximizes Lik(h). However,
Lik(h) can be made arbitrarily large by increasing the value of h(X(n)). We therefore
maximize the modified likelihood

Lmod(h) =
n−1∏
i=1

h(Xi) exp {−H(Xi)} × exp
{
−H(X(n))

}
. (1.2)

and set ĥn(X(n)) to be arbitrarily large (i.e. ĥn(X(n)) = ∞) to find the MLE. That
is, the MLE on [0, X(n)) is found by maximizing Lmod(h), and it is set to +∞ for all
x ≥ X(n). This is the same approach as taken in the monotone case, see e.g. [Gre] page
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142, or [RWD], page 338. Let K denote the space of non-negative convex functions
with domain [0, X(n)). Then the MLE may be re-written as

ĥn = argminh∈Kψ(h),

for

ψ(h) =

∫ ∞
0

[∫ t

0

h(s)ds− log h(t)It6=X(n)

]
dFn(t) (1.3)

where Fn is the empirical cumulative distribution function. In Section 3, we provide
a detailed characterization of the maximum likelihood estimator. It may be defined
via a set of equalities and inequalities; However, there is currently no explicit solution
of these inequalities, and computational techniques are necessary.

Let K(a) denote the subspace of K of convex positive function with an antimode
at a. Consider then the profile likelihood of a:

Likmod(a) = max
h∈K(a)

Likmod(h).

We show in Section 3.2 that − logLikmod(a) is itself bathtub-shaped in a, and there-
fore propose the following, two-step, optimization method

[bis] maximize Likmod(a) with a bisection algorithm.
[SR] use the support reduction algorithm developed in [GJW1] to maximize Lik(h)

over K(a).

That is, we find ĥn, via two minimizations:

min
a︸︷︷︸ min

h∈K(a)︸ ︷︷ ︸
{∫ ∞

0

[∫ t

0

h(s)ds− log h(t)It6=X(n)

]
dFn(t)

}
.

[bis] [SR]

For a fixed antimode a, a positive convex function in K(a) may be decomposed in
terms of its mixing measure and support as

h(t) = 1 · α +

∫ a

0

(τ − t)+dν(τ) +

∫ ∞
a

(t− η)+dµ(η),

where ν and µ are positive measures, and α ≥ 0 is a constant (the positivity is what
ensures that h ∈ K(a)). In this representation, we call ν, µ and α the mixing measure
of h, and the support of these measures becomes the support of h. Note that by
definition, the support of ν is contained in [0, a] and the support of µ is contained in
[a,X(n)]. The total measure of a function h is then α + ν[0, a] + µ[a,X(n)]. We also
use the term basis functions for 1, (τ − t)+ for τ in [0, a] and (t−η)+ for η in [a,X(n)].
Thus, if h(t) = 0.5 + 3 · (2− t)+ we will say that it has support supp = {1}× {2}× ∅
and mixing measure mix = {0.5} × {δ3} × ∅. Proposition 3.1 shows that the support

of ĥn is always finite for a fixed sample size. In fact, in practice the number of support
points is considerably smaller than n.
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The support reduction (SR) algorithm as developed by [GJW1], is an extension
of the vertex direction algorithm, previously developed by [Fed, Sim, Wyn] (see also,
[Böh1, Böh2, LK]). Within optimization theory, the SR algorithm can be classified as
an active set method. The algorithm is designed to handle nonparametric and semi-
parametric M-estimation problems. Nonparametric solutions are infinite-dimensional;
however, often it is known that the resulting estimator uses only a small number of
dimensions. In these cases the support reduction algorithm works particularly well.

The main idea behind the support reduction algorithm is as follows. We wish to
minimize a criterion function ψ(h) = − logLikmod(h) over the space of h ∈ K(a) with

decomposition (1.4). Given a current iterate ĥ with finite support ŝupp and mixing

measure m̂ix , we first find a new support point by finding the basis function e∗ such
that the directional derivative

lim
ε→0

ψ
(
ĥ+ εe

)
− ψ

(
ĥ
)

ε

is smallest. The support corresponding to e∗ is added to ŝupp to yield ŝupp
∗
, and then

ψ is minimized over all h with support given by ŝupp
∗

to give the new mixing measure.
This is the vertex direction part of the algorithm: the idea is to continually move in
a direction which decreases the criterion function the most. The support reduction
algorithm adds an additional step, which insures that throughout the algorithm we
remain in the constrained space; in this case this is equivalent to requiring that the
mixing measure remain positive.

Section 3 gives the details of the implementation for the MLE. The section also
contains all of the necessary theoretical results. However, as the practical imple-
mentation of the algorithm for the MLE requires several technical adjustments, we
also discuss here the least squares estimator (LSE) for which the exposition is more
straightforward.

Let Hn denote the cumulative empirical hazard function

Hn(t) =

∫ t

0

1

1− Fn(s−)
dFn(s),

and fix a 0 < T <∞. The LSE is defined as

h̃n = argminh∈KT

{
1

2

∫ T

0

h2(t)dt−
∫ T

0

h(t)dHn(t)

}
,

where KT denotes the space of positive convex functions on [0, T ]. This can be moti-
vated as follows. Suppose that Hn is absolutely continuous with respect to Lebesgue
measure so that dHn(t) = h∗n(t)dt makes sense. Then the LSE could be found as the
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minimizer of

1

2

∫ T

0

(hn(t)− h∗n(t))2dt

=
1

2

∫ T

0

h2(t)dt−
∫ T

0

h(t)h∗n(t)dt+
1

2

∫ T

0

(h∗n)2(t)dt

=
1

2

∫ T

0

h2(t)dt−
∫ T

0

h(t)dHn(t) + C(X1, . . . , Xn),

where the term C(X1, . . . , Xn) depends on the data only, and does not impact the
minimization.

Since the implementation of our scheme is simpler for the LSE, this is given in detail
in Section 2. Examples for both estimators are considered in Section 4. Technical
proofs are collected in the Appendix.

The asymptotic theory of both the maximum likelihood and least squares estima-
tors was studied in-depth in [JW], and we direct the interested reader there for the
theory, and also for a more thorough review of the history of the problem. For the
purposes of this report, it sufficient to note that both the MLE and LSE are consistent
for the true hazard function, and, under the assumptions of strict convexity, exhibit
an n2/5 local rate of convergence. In [JW] we conjecture that if the true hazard func-
tion has a second derivative equivalent to zero, then both estimators will achieve a
global rate of convergence of n1/2. Using the algorithm we are able to provide further
evidence for this conjecture, see Figure 6 in Section 4 and the associated discussion.

We also note that in [JW], hazard estimation under right censoring, and the esti-
mation of a convex Poisson intensity are studied. The techniques described here may
be extended to those settings as well.

The algorithms described here are available through the R package convexHaz,
[JWMW]. Currently this includes the MLE and LSE for hazard estimation, but we
hope to include right censoring and Poisson intensity estimation in future versions.

2. Least Squares Estimator

To find the LSE, we need to find the minimizer of

ϕ(h) =
1

2

∫ T

0

h2dt−
∫ T

0

hdHn,

over the space KT , the space of nonnegative convex hazard functions on [0, T ]. Propo-
sition 3.1 in [JW] shows that the minimizer of ϕ exists and is unique, and hence the

problem is well-defined. We denote the antimode of h̃n by a0.
Let KT (a) denote the class of nonnegative convex functions on [0, T ] with antimode

occurring at a. Proposition 2.6 shows that ϕ̃(a) = minh∈KT (a) ϕ(h) is bathtub shaped
as a function of a. Clearly, its minimum lies at the “target”, namely the antimode a0

of h̃n.
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As for the MLE, we perform the minimization in two steps. The bisection algorithm
is used to search over a ∈ [0, T ] to find a0, and the support reduction algorithm is
used to find ϕ̃(a) for fixed a. The SR algorithm also finds the unique function which
minimizes ϕ(h) over KT (a), and hence, when a = a0, this yields the LSE. Proposition
2.2 shows that the constrained LSE exists and is unique. Also, it has finite support,
and hence the support reduction is quite efficient.

The rest of this section is organized as follows. In Section 2.1 we give the details of
the support reduction algorithm for the constrained least squares problem. Section
2.2 discusses briefly the bisection algorithm we use. Lastly, necessary technical results
are collected in Section 2.3.

2.1. Support Reduction: minimizing ϕ(h) over KT (a). To describe the support
reduction algorithm, we begin by labelling the basis functions

e0(t) ≡ 1,

e1,τ (t) = (τ − t)+,

e2,η(t) = (t− η)+.

Now, any hazard function h̃ with finite support may be expressed in terms of the
basis functions

h̃ = α̃ · e0 +
k∑
i=1

ν̃i · e1,τi +
m∑
j=1

µ̃j · e2,ηj
.

In the description of the algorithm, it is useful to work with the equivalent charac-
terization of h̃ in terms of the support s̃upp = {1} × {τ1, . . . , τk} × {η1, . . . , ηm} and

associated mixing measure m̃ix = {α̃} × {ν̃1, . . . , ν̃k} × {µ̃1, . . . , µ̃m}.
Next, we calculate the directional derivatives of the criterion function ϕ. This is

done using integration by parts. Let Yn(t) =
∫ t

0
Hn(s)ds and for any function h, let

H(t) =
∫ t

0
h(s)ds denote its integral and H(t) =

∫ t
0
H(s)ds denote its double integral.

Then the directional derivatives are

∇0ϕ(h) = lim
ε→0

ϕ(h+ ε e0)− ϕ(h)

ε
= (H −Hn)(T ),

∇1ϕ(h)[τ ] = lim
ε→0

ϕ(h+ ε e1,τ )− ϕ(h)

ε
= (H− Yn)(τ),

∇2ϕ(h)[η] = lim
ε→0

ϕ(h+ ε e2,τ )− ϕ(h)

ε
= (T − η)(H −Hn)(T )− (H− Yn)(T ) + (H− Yn)(η).

(2.1)
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Since the criterion function ϕ is convex as a function of h, we know that we have
found its minimizer h̃n over KT if the directional derivative at h̃n is positive in any
possible direction. The same is true when minimizing over KT (a), and in this case,
the possible directions may be described via the basis functions e0, e1,τ for τ ∈ [0, a]

and e2,η for η ∈ [a, T ]. To this end, let ∇ϕ(h̃) denote the minimum of the directional
derivatives

∇ϕ(h̃) = min

{
∇0ϕ(h̃), min

τ∈[0,m0]
∇1ϕ(h̃)[τ ], min

η∈[m0,T ]
∇2ϕ(h̃)[η]

}
,

at a current estimate h̃.
The support reduction algorithm now proceeds as follows. Choose an accuracy

constant ε > 0.

SUPPORT REDUCTION ALGORITHM FOR THE
CONSTRAINED LSE OF A CONVEX HAZARD:

STEP 0. Obtain an initial estimate, h̃. A simple option is h̃ = α̃, where α̃ =
Hn(T )/T (this minimizes the criterion function for constant hazards).

WHILE ∇ϕ(h̃) is less than −ε REPEAT 1-3:

STEP 1. Given a current estimate h̃, find the best direction to move in. To
do this, check

∇0ϕ(h̃), min
τ∈[0,a]

∇1ϕ(h̃)[τ ], min
η∈[a,T ]

∇2ϕ(h̃)[η].

The argument which minimizes the smallest of these three quantities
identifies the new direction, and we denote it as e∗. For example, if
minτ∈[0,a]∇1ϕ(h̃)[τ ] is smallest, with minimum occurring at τk+1, then
e∗ = e1,τk+1

.

Add the support of e∗ to s̃upp, obtaining s̃upp
∗
.

STEP 2. Find the mixing measure m̃ix
∗

which minimizes the criterion func-
tion ϕ(h) over all functions with support s̃upp

∗
. Note that this a straight-

forward finite-dimensional minimization of a quadratic.

Let h̃∗ denote the function with support s̃upp
∗

and mixing measure m̃ix
∗
.

Unfortunately, there is no guarantee that h̃∗ is in KT (a), since there may

be negative weights in m̃ix
∗
. We therefore find the largest λ such that

(1 − λ)h̃ + λh̃∗ is in KT (a). This is the support reduction step. Further
details are given in Remark 2.1.

Suppose that s̃upp
∗

is given by {α̃∗}×{ν̃∗1 , . . . , ν̃∗l }×{µ̃∗1, . . . µ̃∗m}. We may
also express s̃upp as {α̃}× {ν̃1, . . . , ν̃l}× {µ̃1, . . . µ̃m}, where one element
of the mixing measure (corresponding to the newly added support point)
is zero.
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WHILE min{α̃∗, ν̃∗1 , . . . , ν̃∗l , µ̃∗1, . . . µ̃∗m} < 0 REPEAT A-B:

STEP A. Let

γ∗ = min

{
α̃∗

α̃
,
ν̃∗i
ν̃i
,
µ̃∗j
µ̃j

}
i=1,...,l;j=1,...,m

.

Set λ∗ = (1 − γ∗)−1 and calculate m̃ix = (1 − λ∗)m̃ix + λ∗m̃ix
∗
,

with component-wise addition. This creates the comparison iterate
in case the support reduction step needs to be repeated. However,
one of the entries of m̃ix is equal to zero. Delete the corresponding
support point and associated element of the mixing measure from
m̃ix and s̃upp

∗
.

STEP B. Find the mixing measure m̃ix
∗

which minimizes the crite-
rion function ϕ(h) over all functions with support s̃upp

∗
.

STEP 3. Set the current estimate h̃ = h̃∗.

Remark 2.1. How does the support reduction step work? For simplicity, consider

the case when m̃ix
∗

is given by ∅ × ∅ × {µ̃∗1, . . . µ̃∗m}, with m̃ix = ∅ × ∅ × {µ̃1, . . . µ̃m}.
To find the largest λ such that (1− λ)h̃+ λh̃∗ is in KT (a), we need to find the largest
λ such that (1 − λ)µ̃i + λµ̃∗i ≥ 0 for i = 1, . . . ,m. Choosing the largest such λ gives

the most weight to the newly proposed h̃∗, and hence this is the desirable choice.
Since the desired inequality holds whenever µ̃∗j ≥ 0, we restrict the search to the

negative weights. For these, we have that (1 − λ)µ̃i + λµ̃∗i ≥ 0 if and only if λ ≤
µ̃i/(µ̃i − µ̃∗i ), and hence the largest such λ is given by

λ∗ = min
i:µ̃∗i<0

{
µ̃i

µ̃i − µ̃∗i

}
=

1

1−mini=1,...,m(µ̃∗i /µ̃i)
.

Clearly, there exists an i0 such that (1− λ)µ̃i0 + λµ̃∗i0 = 0.
In addition, note that Proposition 2.7 guarantees that a newly proposed point will

not be removed by this step.

Figure 2 shows an example of the support reduction algorithm for a random sample
of size 100 from a Weibull distribution with hazard function h(t) = 2t. The algorithm
converged after 11 iterations. We set a = 0, T = 1.5, and ε = 10−8.

2.1.1. Practical considerations. There are several computational issues that arise in
the implementation of the algorithm.

Gridded implementation. In practice, it is not possible to find the exact location
of the minimum of the directional derivatives, as the gradient of the criterion function
is far from smooth. Therefore, a natural approach is to minimize the gradient over
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Figure 2. Example of convergence in the support reduction algorithm: The example
was done using the R package convexHaz with T = 1.5 and the antimode set at zero.
The LSE is obtained as the 11th iterate.

a pre-specified, and sufficiently dense, grid. This is not ideal, as there is no way to
guarantee the behavior of the gradient outside of the grid.

In our implementation, we split [0, T ] into M intervals (resulting in M + 1 grid
points), and only checking for the minimum at these locations. Naturally, the larger
M is, the more accurate our answer; However, increasing M also increases computing
time. For example, to obtain the results in Figure 2, M was set to 100 (the default).
For a sample size of 100, the computing time takes seconds. However, as we ultimately
iterate the support reduction algorithm in the bisection step, it is important to keep
computing time to a minimum.

A gridless alternative. Suppose that the grid used in the algorithm is such that
G = {θ1, . . . , θM+1}, and suppose also that in Step 1 the algorithm proposed the new
support point θ ∈ G. We then augment the grid to

G ∪
{
θi−1 + θi

2
,
θi + θi+1

2

}
.
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This has no effect on Step 2 of the algorithm, but will impose a finer grid when the
criterion ∇ϕ(h̃) ≤ −ε is next checked.

Naturally, there are many other ways in which one could augment the grid at this
time. We found that the proposed method was the most efficient, giving the best
results without sacrificing the speed of the algorithm. A comparison of the gridded
vs. gridless implementations is provided in Section 4.

2.2. The Bisection Algorithm. We next briefly describe the bisection algorithm
used in the outer minimization step. Proposition 2.8 shows that the “profile” criterion
function ϕ̃(a) = minh∈K(a) ϕ(h) is itself bathtub shaped in a. Although ϕ̃(a) is not
convex, and therefore the bisection algorithm is not guaranteed to converge to the
overall minimum, we have found that it works quite well in practice (see for example
Figure 5). The alternative is of course to do a gridded search over a ∈ [0, T ], but this
is much less efficient, and equally not guaranteed to find the minimum.

Fix an accuracy parameter ε > 0. For a vector x = {xi}ki=1, let {x(1), . . . , x(k)}
denote the ordered elements of x (in increasing order) and let ∆x =

∑k
i=1(xi−x(1))

2.

BISECTION ALGORITHM.

STEP 0. Let a = {ai}5i=1 = {0, T/4, T/2, 3T/4, T}, and find ϕ̃ = {ϕ̃(ai)}5i=1.

WHILE ∆ϕ̃ is greater than ε REPEAT 1-2:

STEP 1. Write ϕ̃ as {ϕ̃i}5i=1. If ϕ̃(1) = ϕ̃i for i = 2, 3, 4, set ã1 = ai−1, ã3 = ai
and ã5 = ai+1. If ϕ̃(1) = ϕ̃1, set ã1 = a1, ã3 = a2 and ã5 = a3. If ϕ̃(1) = ϕ̃5,
set ã1 = a3, ã3 = a4 and ã5 = a5. Fill in the remaining elements of ã: set
ã2 = (ã1 + ã3)/2 and ã4 = (ã3 + ã5)/2.

STEP 2. Let a = ã. Find ϕ̃ = {ϕ̃(ai)}5i=1. Note that three of the five entries
have already been calculated.

STEP 3. argmin ϕ̃(a) is given by the ai which minimizes the current ϕ̃.

Clearly, many choices for ∆x exist. Although our choice of the squared difference
is actually quite mild, we find that it works quite well in practice. It appears to do a
solid job of finding the minimum, while keeping the number of iterations low.

Estimating the antimode. In [JW] we show that if the true hazard function has

a unique antimode at ã, then the antimode of the LSE, h̃n, will converge to ã as
the sample size, n, tends to infinity. In fact, we conjecture that the rate of this
convergence is n1/5. However, we would like to point out that our methods are not
optimized to find the estimator of the antimode.
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2.2.1. Practical Considerations. Gridded implementation. Proposition 2.8 shows
that the theoretical value of ϕ̃(a) is bathtub shaped in a, and this is a key observation
in the application of the bisection algorithm. In practice however, we use the gridded
implementation to approximate the true ϕ̃(a). Fortunately, we have found that this
approximation does not invalidate the bathtub shape, and the same is true of the
gridless implementation. An example is given in Figure 5.

2.3. Some Technical Results. In this section we collect the technical results for
least squares estimation. First of all, we check that the constrained least squares
estimator is well-defined; this is done in Theorem 2.2. Next, we look at the true
characterization of both the overall and constrained LSEs.

In [GJW1], conditions on convergence of the support reduction algorithm are given,
and we check that these hold in our case in Proposition 2.6. Proposition 2.7 shows that
the support reduction step will never remove a newly proposed point, thus avoiding
a potential infinite loop. Lastly, in Proposition 2.8 we show that the profile least
squares criterion, ϕ̃(a) is bathtub shaped.

Lemma 2.2. There exists a unique minimizer of the function ϕ(h) over KT (a). More-
over, the minimizer has support of at most size n+ 1, where n is the sample size. It
follows that the minimizer has finite total measure.

Remark 2.3. For any function h, we use the notation H(t) =
∫ t

0
h(s)ds and H(t) =∫ t

0
H(s)ds.

Lemma 2.4 (Characterization of LSE). The function h̃n minimizes ϕ(h) over KT if
and only if it satisfies

H̃n(T ) = Hn(T ), (2.2)

H̃n(T ) = Yn(T ), (2.3)

H̃n(t) ≥ Yn(t) for all t ∈ [0, T ], (2.4)∫ T

0

(H̃n − Yn)(t)d h̃′n(t) = 0. (2.5)

The last statement is the same as: H̃n(x) = Yn(x) for all changes of slope x of h̃n.

This result is proven in [JW].
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Lemma 2.5 (Characterization of constrained LSE). Let Yn(t) =
∫ t

0
Hn(s)ds. The

function h̃n,a minimizes ϕ(h) over KT (a) if and only if it satisfies

H̃n,a(T ) ≥ Hn(T ), (2.6)

H̃n,a(t)− Yn(t) ≥ 0, for all t ∈ [0, a] (2.7)

with equality at all τ1, . . . , τk.

(T − t)[H̃n,a −Hn](T )−
∫ T

t

[H̃n,a −Hn](s)ds ≥ 0 for all t ∈ [a, T ], (2.8)

with equality at all η1, . . . , ηm.

h̃n,a(T )[H̃n,a −Hn](T )− h̃′n,a(T )[H̃n,a − Yn](T ) +

∫ T

0

(H̃n,a − Yn)(t)d h̃′n,a(t) = 0.

(2.9)

Essentially, the characterization says that h̃n,a is the unique minimizer if and only
if the directional derivatives (2.1) are positive in all directions, and equal to zero in

the direction of h̃n,a. These are the standard Fenchel conditions. Since the space is
infinitely dimensional though, some work is necessary to make the statement rigorous.

In [GJW1], three assumptions on the criterion function are described as sufficient
so that the support algorithm converges to the true minimizer. We next show that
the LSE criterion ϕ(·) satisfies these.

Proposition 2.6. The criterion function for the LSE

ϕ(h) =
1

2

∫ T

0

h2dt−
∫ T

0

hdHn,

satisfies the conditions

A1. ϕ is convex on KT (a) and ϕ(h + t(g − h)) is continuously differentiable as a
function of t, for t ∈ (0, 1).

A2. The directional derivative ∇ϕ(h)[g] is linear in g.
A3. For any specific function h0 ∈ KT (a) with ϕ(h0) <∞, there exists an ε̄ ∈ (0, 1]

such that for all h ∈ KT (a) with ϕ(h) < ϕ(h0) and any basis function e, the
following implication holds

∇ϕ(h)[e− h] ≤ −δ ⇒ ϕ(h+ ε(e− h))− ϕ(h) ≤ −1

2
εδ for all ε ∈ (0, ε̄].

Let hk denote a sequence generated by the support reduction algorithm. Also, sup-
pose that in each iteration the new support point, corresponding to a basis function e,
is chosen so that

∇ϕ(hk)(e) ≤
1

2
inf

e′:basis
∇ϕ(hk)(e

′). (2.10)

Then, ϕ(hk)→ ϕ(h̃n).
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The conditions are not too difficult to understand: the first allows us to take
derivatives, the second restricts the exit condition to the basis functions, and the
third ensures that each iteration gets closer to the true minimizer. Note that the last
condition, (2.10), holds trivially within the algorithm if the basis functions considered
in the infimum consist of all those with support in the finite set of points corresponding
to the grid. However, this does not correspond to the overall minimizer of ϕn. To find
the overall minimizer, one needs to consider all of the possible support points within
the continuum [0, a] and [a,X(n)]. Therefore, the algorithm finds an approximation
to the least squares estimator.

Since ϕn is convex, the minimizer, h̃n, is the unique hazard function which satisfies
the Fenchel conditions

(i). ∇ϕn(h̃n)[e] ≥ 0, for all basis functions e,

and (ii). ∇ϕn(h̃n)[h̃n] = 0.

This is easily justified heuristically (a convex function has zero derivative at the
minimum and has an increasing derivative in all other directions), and is also not
difficult to prove (cf. Lemma 1 in [GJW1]). Let hK denote the result of the last
iteration of the support reduction algorithm. The gridded implementation of the
algorithm achieves

HK(T )−Hn(T ) = ∇ϕn(hK)[e0] ≥ −ε,
∇ϕn(hK)[e1,τ ] ≥ −ε, for all τ ≤ a in the grid

∇ϕn(hK)[e2,η] ≥ −ε, for all η ≥ a in the grid.

It is natural to ask to what extent this implies the full Fenchel conditions. Suppose
that τ1 is in the grid, and τ2 does not. Then,

∇ϕn(hK)[e1,τ2 ] = ∇ϕn(hK)[e1,τ1 ] +∇ϕn(hK)[e1,τ2 − e1,τ1 ]
≥ −ε− ||e1,τ2 − e1,τ1||∞{HK(T ) + Hn(T )}
= −ε− |τ2 − τ1|{HK(T ) + Hn(T )}

Similarly,

∇ϕn(hK)[e1,η2 ] ≥ −ε− |η2 − η1|{HK(T ) + Hn(T )}.

Also, ∇ϕn(hK)[hK ] = 0 is always satisfied by nature of the algorithm. Therefore, if
we could bound HK(T ) from above, we would obtain a bound on the error caused by
the gridded approximation. Unfortunately, this bound is only possible if e0 ≡ 1 is in
the characterization, as then we automatically obtain HK(T ) = Hn(T ).

The next result guarantees that when a new support point is added by the algo-
rithm, then it will always have positive weight assigned to it. This ensures that the
algorithm does not enter an infinite loop.
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Proposition 2.7. Suppose that τk+1 is the new support point added. Then, using
the notation used in the description of the algorithm, ν̃∗k+1 > 0. If ηm+1 is the new
support point added, or if 1 is the new support point added, then µ̃∗m+1 > 0 or α̃∗ > 0.

Proposition 2.8. Let a0 ∈ [0, T ] be such that the minimizer of ϕ(h) over h in KT
has an antimode at a0. Suppose that a0 < a1 < a2. Then

min
h∈KT

ϕ(h) ≡ min
h∈KT (a0)

ϕ(h) ≤ min
h∈KT (a1)

ϕ(h) ≤ min
h∈KT (a2)

ϕ(h).

The inequalities also hold if a0 > a1 > a2. That is, ϕ̃(a) = minh∈KT (a) ϕ(h) is bathtub-
shaped in a.

3. Maximum Likelihood Estimator

In this section we describe how to obtain the maximum likelihood estimator, ĥn.
As we discuss in the introduction, the approach is similar to that for the LSE, and
therefore we only describe how to find the profile likelihood (the bisection algorithm
being the same). Additional technical difficulties arise for the MLE. In this case, it is
practically not possible to perform step 2 of the algorithm: given the support points,
one cannot minimize the criterion function in order to find the new mixing measure.
In the following section we outline a method which may be used to overcome this
difficulty. The method is the same as used in [GJW3, Bal].

3.1. Support Reduction: minimizing ψ(h) over K(a). The idea of the modi-
fication is to minimize an approximate version of ψ instead of the true ψ (defined

in (1.3)). Suppose that the current iterate ĥ in the algorithm is close to the true
minimizer of ψ, then instead of minimizing ψ, we could equally well minimize the
quadratic approximation to ψ. This inner minimization is iterated, taking the re-
sult as the new ĥ after each loop, until the directional derivatives of the true ψ are
sufficiently large.

To give the details, we define the approximate criterion function with respect to a
fixed function, which we will call g. Notice that for the approximation to be close,
we assume that g is close to the true minimizer of ψ. We use here the approximation
log(1 + x) ≈ x− x2/2. Fix a function g ∈ K(a). Then ψ(h) is equal to

ψ(g) +

∫ ∞
0

[
H(t)− log h(t)It6=X(n)

]
dFn(t)−

∫ ∞
0

[
G(t)− log g(t)It6=X(n)

]
dFn(t)

= ψ(g) +

∫ ∞
0

[H −G](t)dFn(t)−
∫

[0,X(n−1)]

log

(
1 +

(h− g)(t)

g(t)

)
dFn(t)

≈ ψ(g) +

∫ ∞
0

[H −G](t)dFn(t)−
∫

[0,X(n−1)]

(
(h− g)(t)

g(t)

)
dFn(t)

+
1

2

∫
[0,X(n−1)]

(
(h− g)(t)

g(t)

)2

dFn(t).
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The goal will be to minimize the above approximation in h for a fixed g, and hence
we remove all terms depending only on g to obtain

ψmod(h|g) =

∫ ∞
0

H(t)dFn(t)− 2

∫
[0,X(n−1)]

h(t)

g(t)
dFn(t) +

1

2

∫
[0,X(n−1)]

(
h(t)

g(t)

)2

dFn(t).

The same basis functions apply here as for the LSE algorithm. We therefore define
two sets of directional derivatives.

First we look at the directional derivatives for the true criterion function.

∇0ψ(h) ≡ lim
ε→0

ψ(h+ εe0)− ψ(h)

ε

=

∫ ∞
0

(
t− 1

h(t)
It6=X(n)

)
dFn(t),

∇1ψ(h)[τ ] ≡ lim
ε→0

ψ(h+ εe1,τ )− ψ(h)

ε

=

∫ ∞
0

(
t ∧ τ

(
2τ − t ∧ τ

2

)
− (τ − t)+

h(t)

)
dFn(t),

∇2ψ(h)[η] ≡ lim
ε→0

ψ(h+ εe2,τ )− ψ(h)

ε

=

∫ ∞
η

(
1

2
(t− η)2 − (t− η)

h(t)
It6=X(n)

)
dFn(t).

We also define the three directional derivatives for the quadratic approximation.

∇0ψ
mod(h|g) =

∫ ∞
0

{
t−
(

2

g(t)
− h(t)

g2(t)

)
It6=X(n)

}
dFn(t),

∇1ψ
mod(h|g)[τ ] =

∫ ∞
0

{
t ∧ τ

(
2τ − t ∧ τ

2

)
− 2

(τ − t)+

g(t)
+

(τ − t)+h(t)

g2(t)

}
dFn(t),

∇2ψ
mod(h|g)[η] =

∫ ∞
η

{
1

2
(t− η)2 −

(
2(t− η)

g(t)
+

(t− η)h(t)

g2(t)

)
It6=X(n)

}
dFn(t).

Note that both ∇2ψ(h)[η] ≥ 0 and ∇2ψ
mod(h|g)[η] ≥ 0 for η > X(n−1). Also, the

term It6=X(n)
is not part of the derivatives in the direction of the decreasing elbows,

as the term has no impact for τ ≥ X(n).

We may now describe the algorithm. Choose an accuracy variable ε > 0, and define

∇ψ(h̃) = min

{
∇0ψ(h̃), min

τ∈[0,a]
∇1ψ(h̃)[τ ], min

η∈[a,T ]
∇2ψ(h̃)[η]

}
.

SUPPORT REDUCTION ALGORITHM TO FIND
THE PROFILE MLE OF A CONVEX HAZARD:
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STEP 0. Obtain an initial estimate, ĥ. For the MLE there are two natural choices:
(1) set ĥ = α̂ = 1/X̄, or (2) find the LSE, h̃n,a, for some choice of T < X(n),

extend it linearly beyond T , and set ĥ = h̃n,a.

WHILE ∇ψ(h̃) is less than −ε REPEAT 1-3:

STEP 1 (INNER LOOP). Given a current estimate ĥ, we find the next

proposed ĥp by minimizing the linearized criterion function ψmod(h|ĥ).
This minimization step is done using the support reduction algorithm.
That is, let ĥp = argminhψ

mod(h|ĥ).

To find the starting value for the support reduction algorithm, preform
the following:

STEP A: Consider the support of ĥ, and find the function ĥ0 with the
same support which minimizes the ψmodn (h|ĥ).

WHILE ĥ0 /∈ K(a) REPEAT B:

STEP B: Perform a support reduction step to obtain a new ĥ0, with a
reduced support.

Step 1 yields a new proposed estimate, ĥp. However, since we are mini-
mizing the approximation of the criterion function and not the function
itself, there is no guarantee that we have actually improved our estimate.
Therefore we perform the next step.

STEP 2 (ARMIJO STEP). Find λ in [0, 1] which minimizes

ψ
(

(1− λ)ĥ+ λĥp

)
.

STEP 3. The new ĥ is set to (1− λ∗)ĥ+ λ∗ĥp.

3.1.1. Practical Considerations. The same observations apply to the MLE as to the
LSE. Additional issues are as follows.

Armijo step. In practice, this is implemented using, again, a gridded approach for
λ. In practice we have found that for all outer iteration other than the first, λ∗ = 1.
To speed up the calculations, we only use the gridded approach on iteration one, and
use the faster

λ = 1
while ψ

(
(1− λ)ĥ+ λĥp

)
− ψ

(
ĥ
)
≥ 0 set λ = 0.9λ

otherwise.

Starting point. Because of the inner loop in this approach, the choice of starting
point is more important here. Setting the initial value of ĥ in the algorithm to an
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estimate obtained by using the LSE can be used to reduce the computing time for
the MLE. Naturally, this also requires computing the least squares estimator.

Vector Calculations. Most of the computation required for the algorithm may be
re-written in terms of vector operations, which greatly speeds up the algorithm. This
is especially important when calculating the directional derivatives in the inner loop.

For example, the vector DD2 = {∇2ψ
mod(h|g)[η]}η∈GRID may be found as follows.

We denote GRID ={ηj}j=1,...,m, and let {x(i)}i=1,...,n denote the ordered data. Note
that below we use * and / to denote component-wise multiplication and division of
matrices. Matrix multiplication is denoted by %*%.

u.vec = 1
n
{1}j=1,...,n

u.vec.r = 1
n
{Ij 6=n}j=1,...,n

h.mat ={h(x(i))}i=1,...,n;j=1,...,m

g.mat ={g(x(i))}i=1,...,n;j=1,...,m

e2.mat ={e2,ηj
(x(i))}i=1,...,n;j=1,...,m

E2.mat ={
∫ x(i)

0
e2,ηj

(s)ds}i=1,...,n;j=1,...,m = 1
2
{e2,ηj

(x(i))
2}i=1,...,n;j=1,...,m

DD2.mat = - 2*e2.mat/g.mat + e2.mat*h.mat/(g.mat*g.mat)

DD2 = u.vec %*% E2.mat + u.vec.r %*% DD2.mat

A similar implementation may be used in all calculations.

Nearly singular matrices. As for the LSE, in the inner loop we need to minimize a
quadratic function in finitely many variables. This is easily done using a built-in func-
tion designed to solve systems of linear equations: solve() in R or LinearSolve[]

in Mathematica, for example. Unfortunately, for the MLE algorithm, the system of
equations is sometimes computationally singular. This most often happens just after
a new support point has been added.

If this occurs, we handle the problem by deleting a point of the support closest to
the newly proposed support point. We find that this adhoc solution works reasonably
well in practice. Another solution would be to change the starting point of the
algorithm, but this is much slower.

The finer the grid in the gridded implementation, the more often this problem
arises. We therefore recommend not setting too fine a grid for the MLE. For this
reason also, we do not recommend implementing a gridless version of the MLE.

3.2. Some theoretical results. We again collect all technical results in a separate
section. All of the results are analogues of the results of Section 2.3, and we will
therefore provide only minimal explanations. Note that there is no need to rework
Proposition 2.7, as the proof does not depend on the particular shape of the criterion
function. Similarly, the proof of Lemma 3.1 proceeds along the same lines as the
proof of Proposition 3.4 in [JW] and will therefore be omitted.

Lemma 3.1. There exists a unique minimizer, ĥn,a, of the function ψ(h) over K+(a).
Moreover, the minimizer has support of at most size n+1, where n is the sample size.
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It follows that the minimizer has finite total measure. Also, the minimizer is always
strictly positive on all observation points. That is,

ĥn,a(Xi) > 0 ∀i = 1, . . . , n.

Lemma 3.2. A function ĥn minimizes ψ over K (and hence is the MLE) if and only
if:∫ x

0

x− t
ĥn(t)

It6=X(n)
dFn(t) ≤ x2

2
−
∫ x

0

(x− t)2

2
dFn(t) =

∫ x

0

∫ t

0

Sn(s)dsdt, (3.1)

for all x ≥ 0 with equality at τi for i = 1, . . . , k;∫ ∞
x

t− x
ĥn(t)

It6=X(n)
dFn(t) ≤

∫ ∞
x

(t− x)2

2
dFn(t) =

∫ ∞
x

∫ ∞
t

Sn(s)dsdt, (3.2)

for all x ≥ 0 with equality at ηj for j = 1, . . . ,m;∫ ∞
0

1

ĥn(t)
It6=X(n)

dFn(t) ≤
∫ ∞

0

tdFn(t) =

∫ ∞
0

Sn(t)dt, (3.3)∫ ∞
0

Ĥn(t)dFn(t) = 1− 1/n. (3.4)

A proof appears in [JW]. Using a similar approach we may also prove a character-
ization for the constrained minimum.

Lemma 3.3. The function ĥn,a minimizes ψ(h) over K(a) if and only if it satisfies∫ ∞
0

1

ĥn,a(t)
It6=X(n)

dFn(t) ≤
∫ ∞

0

Sn(t)dt, (3.5)∫ x

0

x− t
ĥn,a(t)

It6=X(n)
dFn(t) ≤

∫ x

0

∫ t

0

Sn(s)dsdt (3.6)

for all x ∈ [0, a], with equality at all τ1, . . . , τk.∫ ∞
x

t− x
ĥn,a(t)

It6=X(n)
dFn(t) ≤

∫ ∞
x

∫ ∞
t

Sn(s)dsdt, (3.7)

for all x ∈ [a,X(n)], with equality at all η1, . . . , ηm.∫ ∞
0

Ĥn,a(t)dFn(t) = 1− 1/n. (3.8)

Proposition 3.4. The criterion function for the MLE

ψ(h) =

∫ ∞
0

{
H(t)− log h(t)It6=X(n)

}
dFn(t),

satisfies the conditions

A1. ψ is convex on K(a) and ψ(h + t(g − h)) is continuously differentiable as a
function of t, for t ∈ (0, 1).
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A2. The directional derivative ∇ψ(h)[g] is linear in g.
A3. For any specific function h0 ∈ K(a) with ψ(h0) <∞, there exists an ε̄ ∈ (0, 1]

such that for all h ∈ K+(a) with ψ(h) < ψ(h0) and any basis function e, the
following implication holds

∇ψ(h)[e− h] ≤ −δ ⇒ ψ(h+ ε(e− h))− ψ(h) ≤ −1

2
εδ for all ε ∈ (0, ε̄].

It follows that the support reduction algorithm converges to the true minimizer of ψ
over K(a).

Let hk denote a sequence generated by the support reduction algorithm. Also, sup-
pose that in each iteration the new support point, corresponding to a basis function e,
is chosen so that

∇ψ(hk)[e] ≤
1

2
inf

e′:basis
∇ψ(hk)[e

′].

Then, ψ(hk)→ ψ(ĥn).

Note that unlike the least squares case, the algorithm for the MLE is a further
approximation to the support reduction algorithm. For this reason, we refrain from
the error calculations we presented there.

Proposition 3.5. Let a0 ∈ [0, T ] be such that the minimizer of ψ(h) over h in K+

has an antimode at a0. Suppose that a0 < a1 < a2, then

min
h∈K+

ψ(h) ≡ min
h∈K+(a0)

ψ(h) ≤ min
h∈K+(a1)

ψ(h) ≤ min
h∈K+(a2)

ψ(h).

The inequalities also hold if a0 > a1 > a2. That is, ψ̂(a) = minh∈K+(a) ψ(h) is
bathtub-shaped in a.

4. Examples and Simulations

4.1. A simulated example. To illustrate our proposed estimators, consider the
distribution with density given by

f(t) =
1 + 2b

2A
√
b2 + (1 + 2b)t/A

, on 0 ≤ t ≤ A.

This distribution was proposed in [HS] as a relatively simple model with bathtub-
shaped hazards, which also has an adequate ability to model lifetime behavior. For
simplicity, we will call this the H-S distribution after the authors. Notably, the
distribution has convex hazards for all values of b in the parameter space, b > −1/2.
In Figure 3, we present an example of the LSE and MLE for a simulation from this
distribution with a sample size of 100. For the LSE estimator we set T to be 0.8.
Notice that both the MLE and LSE blow up at zero and at the ends, T,X(n) (this

occurs by definition for the convex MLE, since ĥn(x) = ∞ for x ≥ X(n)). This
behavior is to typical of shape-constrained nonparametric estimators, see for example
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Remark 4.5 in [JW]. We also compare our convex estimators to the U-shaped MLE
[BCP]. The U-shaped MLE also lacks consistency at 0, X(n) (in fact, as in the convex
case, it is arbitrarily large for all x ≥ X(n)).

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

true hazard
lse (T=0.8)
mle
u−shaped mle

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 true
estimated (mle)
empirical

Figure 3. Estimation of the H-S hazard with b = 0, A = 1 for a sample size of 100:
LSE with T set to 0.8, convex MLE and U-shaped MLE (top); cumulative hazard of the
convex MLE compared to the empirical Hn and true function (bottom).

Note that both the U-shaped and convex maximum likelihood estimators appear
to be following a similar trend, except that one is continuous and the other a step
function. Figure 3 also looks at the cumulative hazards: of the true distribution, of
the estimated convex MLE, and of the data, Hn. Notice that the estimated function
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follows the empirical one quite closely. This will be true in general: the estimator can
only be as good as the data. This trend continues, although to a lesser degree, even
if we set the antimode to an “incorrect” value, see Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

true hazard
mle (a=0.8)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

true
estimated (mle, a=0.8)
empirical

Figure 4. Constrained maximum likelihood estimator of the H-S hazard with antimode
set at a = 0.8: true and estimated hazard functions (left); true, estimated and empirical
cumulative hazard functions (right).

For this example we also examine the effects of the parameter settings in the al-
gorithm: grid size and the gridless implementation. The R package, convexHaz was
used to find the MLE by calling on the function convexMLE(x, M), where M indi-
cates the size of the grid used. For the LSE we look at the function convexLSE(x, M,
GRIDLESS), modifying M, and setting GRIDLESS to 1 if a gridless implementation
is desired. The results are shown in Figure 5. We note that the bathtub shape of
the negative of the logarithm of the profile likelihood is preserved by the different
implementations; this is also true for the LSE.

4.2. Testing a conjecture. In [JW] we show that both the maximum likelihood
and least squares estimators converge locally at a rate of n2/5. Indeed, the following
stronger result holds.

Theorem 4.1. Suppose that h0 is convex and x0 > 0 is a point which satisfies
h0(x0) > 0, h′′0(x0) > 0, and that h

′′
0(·) is continuous in a neighborhood of x0 (also,

x0 < T for the LSE). Then for h̄n = ĥn or h̃n,

n1/5(h̄′n(x0 + n−1/5t)− h′0(x0))⇒ Ĩ(3)(t)
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Figure 5. Bisection diagnostics for the estimators in Figure 3. For both the MLE (left)
and the LSE (right) we can see that the larger the M is, the better the algorithm behaves.
For the LSE, note also how the gridless implementation with M = 100 achieves results
relatively close to those reached by M = 1000 but with GRIDLESS set to zero. However,
the running time for M = 100, GRIDLESS=1 was about 1/6th of the running time of
M = 1000, GRIDLESS=0.

where I(3) is the third derivative of the invelope of Y (t) ≡ k1

∫ t
0
W (s)ds+ k2t

4, with

k1 =

√
h0(x0)

1− F0(x0)
, k2 =

1

24
h′′0(x0).

The invelope process I of Y is defined below. It was shown in [GJW2] that it
exists and is almost surely uniquely defined. Moreover, with probability one, I is
three times differentiable at t = 0.

Definition 4.2. Let W (s) denote a standard two-sided Brownian motion, with W (0) =

0, and define Y (t) =
∫ t

0
W (s)ds + t4. The function {I(t) : t ∈ R}, the invelope of

the process {Y (t) : t ∈ R}, is defined as follows:

• The function I is above the function Y : I(t) ≥ Y (t) for all t ∈ R. (4.1)

• The function I has a convex second derivative. (4.2)

• The function I satisfies
∫

R{I(t)− Y (t)}dI(3)(t) = 0. (4.3)

Theorem 4.1 is proved in [JW]. The idea of the proof is to take the characteriza-
tions of the MLE (Lemma 3.2) and the LSE (Lemma 2.4), describe appropriate local
versions of these, and show that as n → ∞ the characterizations become equivalent
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to those of the invelope. The result gives information on the asymptotic number of
support points of the estimators. That is, for a fixed location x0, in a neighborhood
of size n−1/5 the number of support points is constant. However, the theorem holds
only if the second derivative is positive at x0. We conjecture that for hazards with
h′′0(x) ≡ 0, the rate of convergence will be n1/2, and that this rate of convergence will
be global. If this conjecture holds, then the growth of support points in sample size
should be different for, say, the exponential distribution than for the Weibull distri-
bution with cubic hazard. This is exactly what we see in Figure 6, where we look at
the number of support points vs. sample size in the least squares estimator for simu-
lations from the Weibull distribution versus the Exponential distribution. Although
the algorithm finds an approximation to the least squares estimator, and hence the
number of support points is also approximate, the simulation shows a clear difference
in the asymptotic behavior between the two distributions. Similar behavior should
be seen for the maximum likelihood estimator. We consider the LSE here, because
the algorithm has a faster implementation.
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Figure 6. Support size as a function of sample size for the LSE: observations for the
exponential distribution are grey, and observations for the Weibull distribution with cubic
hazard are black. The least squares estimator with T = 1.2 was used, and we plot the
support size against the effective sample size: the number of data points below 1.2. The
data supports the conjecture that the asymptotic behavior for flat or linear hazards is
different than that of strictly convex hazards.
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Figure 7. Maximum likelihood and least squares estimators for air conditioning data
of [Pro]: the MLE (both convex and convex decreasing) and LSE, with T = 300 hours
(top), and a comparison of the fitted cumulative hazard functions and cumulative distri-
butions with their empirical counterparts (bottom left and bottom right, respectively).
Differences in the nonparametric estimators appear at roughly the 300 hour mark: only
12 of the 213 observations are larger than 300, and 6 of 213 are larger than 400.

4.3. Two examples. Next we consider the number of operating hours between suc-
cessive failures of airconditioning equipment in 13 aircraft. A total of 213 times were
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Figure 8. All plots show the convex MLE in bold, along with: (top) Plot of 25 con-
vex MLE fits to a sample with exponential distribution (mean equal to that of the air
conditioning data sample); (middle) Plot of 25 convex MLE fits to a sample from a dis-
tribution which has hazard the same as the convex decreasing MLE; (bottom) Plot of
25 convex MLE fits to a bootstrapped sample from the air conditioning data set. In
both the bottom and middle plots, the band of sampled curves appears to be centered
at the convex MLE, with the band giving an indication of the variance. It is apparently
difficult to tell the difference between a decreasing curve, and a convex curve; this may
be partially explained by how close the cdfs for both fits are (see Figure 7), along with
the fact that the difference appears in a region with very few observations. The top plot
is designed to test the hypothesis of exponential fit. There is evidence that this is false,
as the bold curve lies in an extreme region of the band.

recorded. This data set was studied in [Pro] and again in [CL]. We are interested in
the overall hazard rate of the intervals between successive failures.
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Figure 9. Maximum likelihood estimator for Canadian lifetime data: the fitted haz-
ard rates (top), cumulative hazard rates and survival functions (bottom left and right,
respectively).

The analysis of [Pro] is summarized as follows. First an exponential fit to the
data is considered. Although the null hypothesis of exponential times is not rejected
by the Kolmogorov-Smirnov test, the data does exhibit a decreasing hazard rate.
Specifically, the empirical survival function lies first below, then above the fitted
exponential one, indicating a lack of fit. Also, the intervals do not show a trend
towards either longer or shorter intervals with increased use of the unit. On closer
inspection, it appears that the exponential is a good fit to the data, but that each
airplane is following a different failure rate. This would correspond to the pooled
intervals exhibiting a decreasing failure rate (Theorem 2, [Pro]). The null hypothesis
of a constant hazard rate (corresponding to the same exponential distribution for all
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13 airplanes), was then tested against the alternative hypothesis of decreasing failure
rate (corresponding to different exponential distributions for the different airplanes)
via a test statistic due to [PP]. The resulting test was significant, with a p-value of
.007, and hence lead to the conclusion that the pooled distribution has decreasing
hazard rate.

[CL] consider fitting time-dependent Poisson processes to the data, and ultimately
settle on a mixture of homogeneous processes, in agreement with [Pro].

Figure 7 shows our fit of the nonparametric convex MLE and LSE (with T set to
300 hours for the LSE). The MLE has an antimode at the 375 hour mark, which
appears to be in contradiction to the results of [PP]. We investigate this further
using resampling methods in Figure 8, and find that there is not sufficient evidence
against the hypothesis of decreasing failure rate. Therefore, our ultimate estimator
is the nonparametric convex and decreasing MLE to the data, also shown in Figure
7. We note that this estimator uses the full likelihood, (1.1), and not the modified
likelihood (1.2).

Lastly, we apply our estimators to a lifetime data set: the Canadian mortality table
for the years 2000 to 2002 [Can]. To generate our results, we took a random sample
of size n = 1000 from the distribution given by the lifetables. We also use a simplified
version of the standard actuarial assumption of uniform deaths for fractional ages.
That is, we assume that all deaths occurred half-way through the year. The resulting
maximum likelihood estimators for both male and female lifetimes are given in Figure
9, fitted cumulative hazards and survival functions are also shown. A parametric
approach for this data was considered in [BLZ] (Figure 2a). Specifically, [BLZ] fit a
mixture of flexible and reduced additive Weibull survival functions. A comparison of
the survival functions is provided in Figure 10.
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Figure 10. Fitted survival functions of [BLZ] (left and middle), and the survival func-
tions from the convex MLE (right). The [BLZ] model was fit directly to the life table
survival function, whereas the convex MLE was fit to a sample of size 1000 from this
distribution.
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Appendix

Sketch of proof of Lemma 2.2. The key idea is to show that the minimizer of ϕ(h)
over KT (a) must lie in the compact set

{h : h ∈ KT (a), 0 ≤ h ≤ B}
for some constant B. The proof of this is similar to that of Proposition 3.1 in [JW],
and we therefore omit the details. Since the function ϕ is strictly convex on KT (a) it
now follows that there exists a unique minimizer.

Next, again as in Proposition 3.1 in [JW], we may show that the minimizer has at
most n+ 1 changes of slope. Since each change of slope corresponds to an element of
the support, the result follows. �

Proof of Lemma 2.5. For two functions h, g, we calculate

ϕ(g)− ϕ(h) =
1

2

∫ T

0

(g − h)2dt+

∫ T

0

(g − h)d[H −Hn](t)

≥
∫ T

0

(g − h)d[H −Hn](t)

= (g − h)(T )[H −Hn](T )− (g − h)′(T )[H− Yn](T )

+

∫ T

0

[H− Yn](t)d(g − h)′, (A-1)

by integration by parts. To show that the characterization is necessary, notice that
by the above, we have that

∇ϕ(h)[γ] ≡ lim
ε→0

ϕ(h+ εγ)− ϕ(h)

ε
= γ(T )[H −Hn](T )− γ′(T )[H− Yn](T )

+

∫ T

0

[H− Yn](t)dγ′,

for any functions h and γ.
Let h̃n,a denote the true minimizer of KT (a). Now, if γ is such that h̃n,a + εγ is in

KT (a) (for sufficiently small ε), then we have that ∇ϕ(h̃n,a)[γ] ≥ 0 (since ϕ(h̃n,a +

εγ) ≥ ϕ(h̃n,a)). This is true for the choice of γ equal to 1, (τ − t)+ for τ ∈ [0, a], and
for (t−η)+ for η ∈ [a, T ]. These choices of γ yield the inequalities in conditions (2.6),
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(2.7) and (2.8). Next, if γ is such that h̃n,a ± εγ is in KT (a) (again, for sufficiently

small ε), then it follows that ∇ϕ(h̃n,a)[γ] = 0. Choosing γ = (τi − t)+, (t − ηj)+ for

i = 1, . . . , k and j = 1, . . . ,m, as well as γ = h̃n,a gives the remaining equalities.

Next, using (A-1), we find that for any h and h̃n,a ∈ K(a), with h̃n,a satisfying the

conditions of the lemma, ϕ(h)− ϕ(h̃n,a) is bounded below by

(h− h̃n,a)(T )[H̃n,a −Hn](T )− (h− h̃n,a)′(T )[H̃n,a − Yn](T )

+

∫ T

0

[H̃n,a − Yn](t)d(h− h̃n,a)′

(2.9)
= h(T )[H̃n,a −Hn](T )− h′(T )[H̃n,a − Yn](T ) +

∫ T

0

[H̃n,a − Yn](t)dh′.

Therefore

ϕ(h)− ϕ(h̃n,a) ≥ α[H̃n,a −Hn](T ) +

∫ a

0

[H̃n,a − Yn](τ)dν(τ)

+

∫ T

a

{
(T − η)[H̃n,a −Hn](T )−

∫ T

η

[H̃n,a −Hn](s)ds

}
dµ(η),

(A-2)

using that any function in KT (a) may be decomposed as

h(t) = 1 · α +

∫ a

0

(τ − t)+dν(τ) +

∫ T

a

(t− η)+dµ(η).

Lastly, (A-2) is nonnegative by the inequalities in (2.6)-(2.8). Thus the conditions
are sufficient. �

Proof of Proposition 2.6. A simple calculation shows that for any h and g

ϕ(h+ εg)− ϕ(h) =
1

2
ε2

∫ T

0

g2dt+ ε

∫ T

0

gd(H −Hn) (A-3)

=
1

2
ε2

∫ T

0

g2dt+ ε∇ϕ(h)[g] (A-4)

and the first two conditions follow easily. Since the LSE has finite support measure,
we may assume that all of the functions h have total measure (α + ν[0, a] + µ[a, T ])
bounded by some fixed, large, number, S. We then have that

sup
e:basis

∫ T

0

e2dt ≤ max

{
T,
T 3

3

}
≡M,

and it follows that ∫ T

0

h2dt ≤ 2(S2 + 1)M,
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by applying Jensen’s inequality. Using the result of the above display in A-3, we
obtain that

ϕ(h+ ε(e− h))− ϕ(h) ≤ 1

2
2(S2 + 1)Mε2 − δε,

if ∇ϕ(h)[g] ≤ −δ. Therefore, if ε̄ is chosen sufficiently small, this is bounded above
by −δε/2 as required.

The last part of the proposition follows from Theorem 1 in [GJW1]. �

Proof of Proposition 2.7. We provide the details only in the first case in the statement
of the proposition. Suppose that the current estimate of h̃ is given by

h̃ = α̃ · e0 +
k∑
i=1

ν̃ie1,τi +
m∑
j=1

µ̃je2,ηj
.

We will assume that α̃ > 0 to simplify the exposition. Note that h̃ must be the
minimizer of ϕ over the class of hazard functions with support given by s̃upp =
{1} × {τ1, . . . , τk} × {η1, . . . , ηm}. It therefore follows that

∇ϕ(h̃)[γ] = 0,

for γ = e0, e1,τ1 , . . . , e1,τk , e2,η1 , . . . , e2,τm .

The new mixing measure m̃ix
∗

is obtained by minimizing ϕ over the class of hazard
functions with support given by s̃upp

∗
= {1}∪{τ1, . . . , τk, τk+1}∪{η1, . . . , ηm}, which

is a larger class of functions than s̃upp. Therefore,

ϕ(h̃∗) < ϕ(h̃).

By the convexity of ϕ, for any ε > 0,

ϕ(εh̃∗ + (1− ε)h̃)− ϕ(h̃) ≤ εϕ(h̃∗) + (1− ε)ϕ(h̃)− ϕ(h̃)

= ε(ϕ(h̃∗)− ϕ(h̃)) < 0.

Then

∇ϕ(h̃)[h̃∗ − h̃] = lim
ε→0

ϕ(εh̃∗ + (1− ε)h̃)− ϕ(h̃)

ε
= [α̃∗ − α̃]∇ϕ(h)[e0]

+
k∑
i=1

[ν̃∗i − ν̃i]∇ϕ(h̃)[e1,τi ] + ν̃∗k+1 ∇ϕ(h)[e1,τk+1
]

+
m∑
j=1

[µ̃∗j − µ̃j]∇ϕ(h̃)[e2,ηj
]

= ν̃∗k+1 ∇ϕ(h̃)[e1,τk+1
] < 0.

Since ∇ϕ(h̃)[e1,τk+1
] < 0, we conclude that ν̃∗k+1 > 0. �
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Proof of Proposition 2.8. Since KT (a1) ⊂ KT , the first inequality is clearly true. It
remains to prove the second.

Invoking Lemma 2.2, let hi denote the unique minimizer of ϕ(h) over KT (ai) for
i = 0, 1, 2. Then, as in (A-2), we obtain that

ϕ(h2)− ϕ(h1) ≥ (h2 − h1)(T )[H1 −Hn](T )− (h2 − h1)
′(T )[H1 − Yn](T )

+

∫ T

0

[H1 − Yn](t)d(h2 − h1)
′

(2.9)
= h2(T )[H1 −Hn](T )− h′2(T )[H1 − Yn](T ) +

∫ T

0

[H1 − Yn](t)dh′2

= α2[H1 −Hn](T ) +

∫ a2

0

[H1 − Yn](τ)dν2(τ)

+

∫ T

a2

{
(T − η)[H1 −Hn](T )−

∫ T

η

[H1 −Hn](s)ds

}
dµ2(η),

by writing

h2(t) = α2 · 1 +

∫
[0,a2]

(τ − t)+dν2(τ) +

∫
[a2,T ]

(t− η)+dµ2(η).

Since h1 must satisfy (2.6)-(2.8), we obtain that

ϕ(h2)− ϕ(h1) ≥ α2[H1 −Hn](T ) +

∫ a2

0

[H1 − Yn](τ)dν2(τ)

+

∫ T

a2

{
(T − η)[H1 −Hn](T )−

∫ T

η

[H1 −Hn](s)ds

}
dµ2(η),

(2.6)

≥
∫ a2

0

[H1 − Yn](τ)dν2(τ)

+

∫ T

a2

{
(T − η)[H1 −Hn](T )−

∫ T

η

[H1 −Hn](s)ds

}
dµ2(η),

(2.8)

≥
∫ a2

0

[H1 − Yn](τ)dν2(τ)

(2.7)

≥
∫ a2

a1

[H1 − Yn](τ)dν2(τ).

Therefore, if we could show that [H1−Yn](τ) ≥ 0 for all τ ∈ [a1, a2], then we would
be done. This is what we shall prove next. Using a similar argument as above we
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show that

0 ≥ ϕ(h0)− ϕ(h1)

=
1

2

∫ T

0

(h0 − h1)
2dt+

∫ T

0

(h0 − h1)d(H1 −Hn)

≥
∫ T

0

h0d(H1 −Hn),

by using (2.9). Integration by parts as above, plus (2.6)-(2.8) show that

0 ≥
∫ a1

a0

{(T − η)(H1 −Hn)(T )− (H1 − Yn)(T )} dµ0(η).

Now, if µ0 ≡ 0 on [a0, a1] then h0 has an antimode at a1 and and hence h0 and h1

must be equal. In this case, there is nothing to prove, and hence we assume that µ0

has positive mass on [a0, a1]. It follows that there exists a t ∈ [a0, a1] such that

(T − t)(H1 −Hn)(T )− (H1 − Yn)(T ) ≤ 0.

By (2.6), the function on the left-hand side of the display is decreasing in t, and hence
the inequality must also hold for all t ≥ a1. Now, by (2.8), we have that for all η ≥ a1,

(T − η)(H1 −Hn)(T )− (H1 − Yn)(T ) + (H1 − Yn)(η) ≥ 0.

Since, the first two terms on the left-hand side are negative, it follows that the second
term must be positive. That is, we have shown that (H1−Yn)(η) ≥ 0 for all η ∈ [a1, T ]
as desired.

A similar argument proves the inequality minh∈KT (a1) ϕ(h) ≤ minh∈KT (a2) ϕ(h) for
a2 > a1 > a0. �

Proof of Lemma 3.3. For any two functions h and g in K(a) we calculate

ψ(h)− ψ(g) ≥
∫ ∞

0

{
H(t)−G(t) +

(
1− h(t)

g(t)

)
It6=X(n)

}
dFn(t)

since − log x ≥ 1 − x. Now, setting g = ĥn,a, and using the characterization of
elements of K(a), (1.4), on h, we obtain that the right hand side is equal to

a

{∫ ∞
0

(
t− 1

ĥn,a(t)
It6=X(n)

)
dFn(t)

}
+

{
1− 1

n
−
∫ ∞

0

Ĥn,a(t)dFn(t)

}

+

∫ ∞
0

{∫ x

0

∫ t

0

Sn(s)dsdt−
∫ x

0

x− t
ĥn,a(t)

It6=X(n)
dFn(t)

}
dν(x)

+

∫ ∞
0

{∫ ∞
x

∫ ∞
t

Sn(s)dsdt−
∫ x

0

t− x
ĥn,a(t)

It6=X(n)
dFn(t)

}
dµ(x).
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This is nonnegative since ĥn,a is a function which satisfies conditions (3.5)-(3.8). It
follows that these conditions are sufficient to describe a minimizer of ψ.

We next show that the conditions are necessary. To do this, recall the directional
derivative

∇ψ(h)[γ] ≡ lim
ε→0

ψ(h+ εγ)− ψ(h)

ε
=

∫ ∞
0

{
Γ(t)− γ(t)

h(t)
It6=X(n)

}
dFn(t). (A-5)

If ĥn,a minimizes ψ, then for any γ such that ĥn,a + εγ is in K(a) for sufficiently small

ε it must be that ∇ψ(ĥn,a)[γ] ≥ 0. If, however, ĥn,a ± εγ is in K for sufficiently small

ε then, ∇ψ(ĥn,a)[γ] = 0. Choosing, respectively, γ(t) ≡ 1, (t− y)+ for y ∈ [0, a], and

(y − t)+ for y ∈ [a,X(n)] then ĥn,a + εγ is in K(a), and we obtain the inequalities in

conditions (3.5)-(3.7). Since (1 ± ε)ĥn,a is also in K(a), for sufficiently small ε, we
obtain (3.8). Choosing, γ = (τi − t)+, (t − ηj)+, yields the equalities in (3.5) and

(3.6), since each of these functions ĥn,a ± εγ is in K(a). Thus the conditions are
necessary. �

Proof of Proposition 3.4. The first two properties are immediate. By Lemma 3.1, we
may restrict our search to all functions with total support measure ||µ̂|| ≤ S < ∞
and bounded below by some positive value b > 0. By (3.5), we may also assume that∫

[0,X(n))
1
h
dFn(t) < B <∞.

ψ(h+ εg)− ψ(h) =

∫ ∞
0

−
{

log
(

1 + ε
g

h

)
− εg

h

}
It6=X(n)

dFn

+ε

∫ ∞
0

{
G− g

h
It6=X(n)

}
dFn

≤ ε2

2

∫ ∞
0

g2

h2
It6=X(n)

dFn + ε∇ψ(h)[g].

Therefore,

ψ(h+ ε(e− h))− ψ(h) ≤ ε2

2
2(S2 + 1) max{X(n), 1}2

B

b
+ ε∇ψ(h)[g].

Thus, if ∇ψ(h)[g] ≤ −δ, then the last display is bounded above by −εδ/2 for all
ε ≤ ε̄, as long as ε̄ is chosen sufficiently small. The full result follows by applying
Theorem 1 of [GJW1]. �

Proof of Proposition 3.5. As for the LSE, we need only prove the inequality on the
right. A simple calculation shows that for any h, g we have

ψ(h)− ψ(g) ≥
∫ ∞

0

{
H(t)−G(t) +

(
1− h(t)

g(t)

)
It6=X(n)

}
dFn(t).
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Let hi = argminh∈K+(ai)
ψ(h). Then we have that

0 ≥ ψ(h0)− ψ(h1)

≥
∫ ∞

0

{
H0(t)−H1(t) +

(
1− h0(t)

h1(t)

)
It6=X(n)

}
dFn(t)

= α0

{∫ ∞
0

(
t− 1

h1(t)
It6=X(n)

)
dFn(t)

}
+

{
1− 1

n
−
∫ ∞

0

H1(t)dFn(t)

}
+

∫ a0

0

{
x2

2
−
∫ x

0

(x− t)2

2
dFn(t)−

∫ x

0

x− t
h1(t)

It6=X(n)
dFn(t)

}
dν0(x)

+

∫ ∞
a0

{∫ ∞
x

(t− x)2

2
dFn(t)−

∫ ∞
x

t− x
h1(t)

It6=X(n)
dFn(t)

}
dµ0(x)

≥
∫ a1

a0

{∫ ∞
x

(t− x)2

2
dFn(t)−

∫ ∞
x

t− x
h1(t)

It6=X(n)
dFn(t)

}
dµ0(x),

where the last inequality follows from Lemma 3.3. Since h0 6= h1 (otherwise there is
nothing to prove), it follows that there exists a y ∈ [a0, a1] such that

∫ ∞
y

{
(t− y)2

2
− t− y
h1(t)

It6=X(n)

}
dFn(t) ≤ 0.

Combining this with (3.6) applied to h1 on [a0, a1], we obtain that

y2

2
−
∫ y

0

{
(y − t)2

2
+
y − t
h1(t)

It6=X(n)

}
dFn(t) +

∫ ∞
y

{
−(t− y)2

2
− y − t
h1(t)

It6=X(n)

}
dFn(t) ≥ 0,

which implies that

∫ ∞
0

{
y2

2
− (t− y)2

2
+
t− y
h1(t)

It6=X(n)

}
dFn(t) ≥ 0.

Consider the function

f(y) =

∫ ∞
0

{
y2

2
− (t− y)2

2
+
t− y
h1(t)

It6=X(n)

}
dFn(t)

=

∫ ∞
0

{
t

h1(t)
It6=X(n)

− t2

2

}
dFn(t) + y

∫ ∞
0

{
t− 1

h1(t)
It6=X(n)

}
dFn(t).
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By (3.5) this is an increasing function in y. Therefore, it follows that f(y) ≥ 0 holds
also for all y ≥ a1. Then, for all x ≥ a1,∫ ∞

x

{
(t− x)2

2
− t− x
h1(t)

It6=X(n)

}
dFn(t) ≥ 0

⇒
∫ ∞

0

{
x2

2
− (t− x)2

2
+
t− x
h1(t)

It6=X(n)

}
dFn(t) +

∫ ∞
x

{
(t− x)2

2
− t− x
h1(t)

It6=X(n)

}
dFn(t) ≥ 0

⇒ x2

2
−
∫ x

0

(t− x)2

2
dFn(t) +

∫ x

0

t− x
h1(t)

It6=X(n)
dFn(t) ≥ 0

⇒ x2

2
−
∫ x

0

(t− x)2

2
dFn(t) ≥

∫ x

0

x− t
h1(t)

It6=X(n)
dFn(t). (A-6)

Next, calculating as above, we obtain that

ψ(h2)− ψ(h1)

≥
∫ ∞

0

{
H2(t)−H1(t) +

(
1− h2(t)

h1(t)

)
It6=X(n)

}
dFn(t)

= α2

{∫ ∞
0

(
t− 1

h1(t)
It6=X(n)

)
dFn(t)

}
+

{
1− 1

n
−
∫ ∞

0

H1(t)dFn(t)

}
+

∫ a2

0

{
x2

2
−
∫ x

0

(x− t)2

2
dFn(t)−

∫ x

0

x− t
h1(t)

It6=X(n)
dFn(t)

}
dν2(x)

+

∫ ∞
a2

{∫ ∞
x

(t− x)2

2
dFn(t)−

∫ ∞
x

t− x
h1(t)

It6=X(n)
dFn(t)

}
dµ2(x)

≥
∫ a2

a1

{∫ x

0

(t− x)2

2
dFn(t)−

∫ x

0

x− t
h1(t)

It6=X(n)
dFn(t)

}
dµ0(x) ≥ 0,

by Lemma 3.3 and (A-6).
A similar argument proves the inequality minh∈K+(a1) ψ(h) ≤ minh∈K+(a2) ψ(h) for

a2 > a1 > a0. �
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