Description of Problem

The effective dose (a.k.a. lethal/toxic dose) is the set of covariates which yield a specific response. Let $\mathcal{D} \subset \mathbb{R}^d$ denote the compact domain of the covariates. We assume the a binary response Y is observed and we are interested in sets of the form

$$ED_{100p}^{+} = \{x \in \mathcal{D} : E[Y|X = x] \ge p\} \quad ED_{100p} = \{x \in \mathcal{D} : E[Y|X = x] = p\}$$

where $x = \{x_1, \ldots, x_d\}$ denotes the observed covariates. We assume that the data can be modelled as a logistic regression with

$$\log\left(\frac{E[Y|X=x]}{1-E[Y|X=x]}\right) = \beta_0 x_0^* + \beta_1 x_1^* + \ldots + \beta_k x_k^* = \beta^T x^*,$$

where $x^*(x) : \mathbb{R}^d \mapsto \mathbb{R}^{k+1}$, with $k+1 \ge d$, denotes a smooth function of the covariates. Let $\eta(u) = \log(u/(1-u))$, an increasing function of u. Therefore, we may re-write

$$\mathrm{ED}_{100p}^{+} = \left\{ x \in \mathcal{D} : \beta^{T} x^{*} \ge \eta(p) \right\} \quad \mathrm{ED}_{100p} = \left\{ x \in \mathcal{D} : \beta^{T} x^{*} = \eta(p) \right\}.$$

We estimate these using the plug-in estimators

$$\widehat{\mathrm{ED}}_{100p}^{+} = \left\{ x \in \mathcal{D} : \widehat{\beta}_n^T x^* \ge \eta(p) \right\} \qquad \widehat{\mathrm{ED}}_{100p} = \left\{ x \in \mathcal{D} : \widehat{\beta}_n^T x^* = \eta(p) \right\},$$

where β_n is the well-known maximum likelihood estimator of β . Our goal is to develop a simultaneous confidence region for ED_{100p}^+ and ED_{100p} .

Calculating the Confidence Regions

Below, we explain how to calculate the $100(1 - \alpha)\%$ confidence region for ED⁺_{100p}. A $100(1-\alpha)\%$ confidence region for ED_{100p} is taken as the intersection of the $100(1-\alpha/2)\%$ confidence region for ED_{100p}^+ and the $100(1 - \alpha/2)\%$ confidence region for $(ED_{100p}^+)^c$.

(1) INVERTING SCHEFFE'S BOUNDS

A conservative, and currently only, method developed by Carter et al. (1986) is based on inverting Scheffé's upper bound. Recall that $\lim_n \sqrt{n}(\beta_n - \beta) \sim N_{k+1}(0, \Sigma)$. Then the $100(1-\alpha)\%$ confidence region for ED_p^+ is

$$\operatorname{CR}^+_{\operatorname{SCH},100(1-\alpha)} = \left\{ x : \widehat{\beta}_n^T x^* \ge \eta(p) - \sqrt{\chi_\alpha^2(k+1) \ x^* T \widehat{\Sigma} x^* / n} \right\}.$$

where Σ is the usual estimate of Σ . This approach was studied extensively by Li et al. (2008a) in the linear setting.

(2) VOROBE'EV QUANTILE

Let A be a random closed set (RCS) and define $T(K) = P(\mathbf{A} \cap K \neq \emptyset)$. As defined in Molchanov (1990), the p-quantile of A is $M_p = \bigcup \{K \in \mathcal{M} : T(K) < p\}$, and we choose $\mathcal{M} = \{ \{x\}; x \in \mathbb{R}^d \}$. Then the $100(1 - \alpha)\%$ confidence region for ED_p^+ is

$$\operatorname{CR}^+_{\mathbf{Q},100(1-\alpha)} = M^c_{\alpha},$$

where M_{α} denotes the quantile of \widehat{ED}_{p}^{+} . This is estimated empirically via re-sampling. Heuristically, the confidence region is the collection of points $\{x\}$ such that each falls inside $\overline{\mathrm{ED}}_{n}^{+}$ at least $100(1-\alpha)\%$ of the time.

Simultaneous Confidence Regions for the Multivariate Effective Dose

Department of Mathematics and Statistics York University

(3) NEW DEFINITION OF RCS QUANTILE

Let \mathcal{A} be a collection of sets such that $\mathbf{A} \in \mathcal{A}$ almost surely. Fix a set K, and define the random variable $\xi = \rho_H(\mathbf{A}, K)$. Let q_p^{ξ} denote the *p*-quantile of ξ . The quantile of A is defined as $M_p^H = \bigcup \left\{ A \in \mathcal{A} : \rho_H(A, K) \le q_p^{\xi} \right\}$, where ρ_H denotes the Hausdorff distance. The $100(1 - \alpha)\%$ confidence region for ED_n^+ is then

$$CR^+_{100(1-\alpha)} = M^H_{1-\alpha},$$

where $M_{1-\alpha}^H$ is the quantile of $\widehat{\mathrm{ED}}_p$. Draw A_1, \ldots, A_n samples of ED_p^+ and calculate $K_n = \bigcap_{i=1}^n A_i$ with $\xi_{i,n} = \rho_H(A_i, K_n)$. Then the estimate of the confidence region is

 $\cup \left\{ A_i, i = 1, \dots, n : \rho_H(A_i, K_n) \right\}$

where $\hat{q}_{n,n}^{\xi}$ is the quantile estimate from the observations of $\xi_{i,n}$.

Results

We consider the following four models.

model	true value of $eta^T x^*$	domain
linear	$-6 + 6x_1 + 6x_2$	$[0, 1]^2$
interaction	$-6 + 6x_1 + 6x_2 - 3x_1x_2$	$[0, 1]^2$
quadratic	$-6 + 6x_1 + 6x_2 + 10x_1^2 + 3x_1x_2 + x_2^2$	$[0, 1]^2$
log term	$-10 + 6 \log x_1 + 6 x_2$	$[1, 2]^2$

To compare our methods, we ran Monte Carlo simulations to find the empirical coverage probabilities. We simulate ED_{100p} values under the asymptotic distribution of β_n . The results are shown in the tables below.

	linear	interaction	quadratic	quadratic (+)	log term
р	(1) (2) (3)	(1) (2) (3)	(1) (2) (3)	(1) (2) (3)	(1) (2) (3)
0.1	.99 .89 .97	1.00 .89 .97	1.00 .87 .99	1.00 .87 .99	.99 .92 .98
0.5	.98 .86 .94	1.00 .79 .94	1.00 .80 .98	1.00 .81 .97	.99 .87 .96
0.9	.99 .90 .99	1.00 .91 1.00	1.00 .80 .97	1.00 .80 .96	.98 .88 .96

Table 1: Empirical coverage results for 95% confidence regions when simulating from the limiting distribution. The sample size is 360, except in the fourth column (quadratic (+)), where the sample size is 3600. Results not statistically different from 0.95 are shown in bold.

_		linear	interaction	quadratic	quadratic (+)	log term
	р	(1) (2) (3)	(1) (2) (3)	(1) (2) (3)	(1) (2) (3)	(1) (2) (3)
().1	.18 .12 .17	.26 .16 .21	1.00 .15 .30	1.00 .03 .05	.10 .07 .10
(0.5	.19 .13 .20	.27 .17 .27	1.00 .12 .47	1.00 .03 .05	.18 .12 .19
(0.9	.18 .12 .19	.12 .09 .12	1.00 .24 .66	1.00 .04 .07	.26 .18 .28

Table 2: Median proportion of the domain covered by the confidence region. The simulations are the same as those shown in Table 1.

XIANG JI

jixiang@yorku.ca

$$\leq \widehat{q}_{n,1-\alpha}^{\xi} \},$$

(n = 3600), and log term (n = 360).

- 112.
- ory of Probability and Its Applications, 1990, 35, pp.594-600.

Figure 1: Examples of the different methods: In the leftmost column are sample observations of ED_{50} and the three columns on the right show the three regions (1) $CR_{SCH,95}$, (2) $CR_{Q,95}$, and (3) CR_{95} in light grey, from left to right. Observed values of \widehat{ED}_{50} are shown in blue, and the true set ED_{50} is shown in red. From top to bottom the models are linear (n = 360), interaction (n = 360), quadratic (n = 360), quadratic

References

CARTER, W., CHINCHILLI, V., WILSON, J., CAMPBELL, E., KESSLER, F. and CARCH-MAN, R. (1986). An asymptotic confidence region for the ED100p from the logistic response surface for a combination of agents. *The American Statistician* **40** 124–128. LI, J., ZHANG, C. M., NORDHEIM, E. V. and LEHNER, C. E. (2008a). Estimation and confidence regions of multi-dimensional effective dose. *Biometrical Journal* **50** 110–

MOLCHANOV, I. (1990). Empirical estimation of distribution quantiles of random closed sets (Russian). Teor. Veroyatnost. i Primen. 35 586–592. English translation in: The-