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The Problem Setup:

S =
N∑
i=1

Xi

Xi := ΩX → (0,∞) Severity distribution
N := ΩN → 0, 1, 2, ... ⊥ Xi∀i in(1, ...,N)
Xi IID

Proposition

• Assume a Zero Modified Discrete Log-Concave Distribution
for the number of claims

• While gaining robustness, the proposed model will preserve
efficiency

• Compare our approach with Panjer’s Recursion method
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Popular Distributions for the number of claims N:

• Poisson(λ)

• geometric(p)

• negative binomial(r,p)

• binomial(n,p)

• logarithmic(B)

→ belong to LC class

→ not member of LC class
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Panjer’s Method:

Definition

k
pN(k)

pN(k − 1)
= ak + b, for k = 1, 2, 3, . . .

Model Advantages

• The distribution of the Aggregate Loss is recursively computed

• Simple first approach for model identification

For a sample size of 10,000 with an std = 0.01581139



The proposed model for N:

pN(k) = αδk0 + (1− α)ρ(k)

where. . .

δk0 =

{
1 k = 0
0 otherwise

ρ(k) = eϕ(k) for k = 1, 2, 3, . . .

α ∈ (0, 1)

Identifiable?



The proposed model for N:

pN(k) = αδk0 + (1− α)ρ(k)

where. . .

δk0 =

{
1 k = 0
0 otherwise

ρ(k) = eϕ(k) for k = 1, 2, 3, . . .

α ∈ (0, 1)

Identifiable?



The proposed model for N:

pN(k) = αδk0 + (1− α)ρ(k)

where. . .

δk0 =

{
1 k = 0
0 otherwise

ρ(k) = eϕ(k) for k = 1, 2, 3, . . .

α ∈ (0, 1)

Identifiable?



Identifiability
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ρ(k) =

{
eϕ(k) for k = 1, 2, 3, . . .

0 otherwise
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MLE Estimates:

p̂N(k) = α̂δk0 + (1− α̂)ρ̂(k)

α̂ =
I(Ni (0))

n
for i = 1, . . . , n

ρ̂ =

{
e

̂ϕ(k)MLE for k = 1, 2, 3, . . .
0 otherwise
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l2 Distances from the true PMF:

E G LC NB P
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The Estimate of the Aggregate Loss:

Aggregate Loss:

fS(s) = P[N = 0]δ0(s) + P[N > 0]fS|N>0(s)

P[S = 0] ⇔
N = 0

α̂

fS |N>0

Approximated with
Fourier Transform
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Future work

• Prove consistency of the proposed model

• Generalize the assumptions on the claim severity

• Provide a goodness of fit statistic under a discrete log-concave
distribution
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THANK YOU



fS |N>0(s) =

∫ ∞
−∞

φS(−2πit)e2πitsdt


