A Nonparametric Approach for Estimating Aggregate Loss

Gabriela González
York University

May 25, 2013
joint work with Hanna Jankowski

The Problem Setup:

$$
S=\sum_{i=1}^{N} X_{i}
$$

$X_{i}:=\Omega_{X} \rightarrow(0, \infty) \quad$ Severity distribution
$N:=\Omega_{N} \rightarrow 0,1,2, \ldots \quad \perp X_{i} \forall i \quad i n(1, \ldots, N)$
X_{i} IID
Proposition

- Assume a Zero Modified Discrete Log-Concave Distribution for the number of claims
- While gaining robustness, the proposed model will preserve efficiency
- Compare our approach with Panjer's Recursion method

The Problem Setup:

$$
S=\sum_{i=1}^{N} X_{i}
$$

$X_{i}:=\Omega_{X} \rightarrow(0, \infty) \quad$ Severity distribution
$N:=\Omega_{N} \rightarrow 0,1,2, \ldots \quad \perp X_{i} \forall i \quad i n(1, \ldots, N)$
X_{i} IID
Proposition

- Assume a Zero Modified Discrete Log-Concave Distribution for the number of claims
- While gaining robustness, the proposed model will preserve efficiency
- Compare our approach with Panjer's Recursion method

Popular Distributions for the number of claims N :

- Poisson (λ)
- geometric(p)
- negative binomial(r,p)
- binomial(n,p)
- logarithmic(B)
\rightarrow belong to LC class
\rightarrow not member of LC class

Panjer's Method:

Definition

$$
k \frac{p_{N}(k)}{p_{N}(k-1)}=a k+b, \quad \text { for } \quad k=1,2,3, \ldots
$$

Model Advantages

- The distribution of the Aggregate Loss is recursively computed
- Simple first approach for model identification

For a sample size of 10,000 with an std $=0.01581139$

True Distribution	Unidentified	Poisson	Geometric	Binomial	Logarithmic	Negative Binomial
Negative Binomial	0.003	0.002	0.842	0.000	0.000	0.153
Binomial	0.032	0.689	0.000	0.279	0.000	0.000
Geometric	0.392	0.001	0.607	0.000	0.000	0.000
Poisson	0.119	0.845	0.001	0.022	0.000	0.013

The proposed model for N :

$$
p_{N}(k)=\alpha \delta_{0}^{k}+(1-\alpha) \rho(k)
$$

The proposed model for N :

$$
p_{N}(k)=\alpha \delta_{0}^{k}+(1-\alpha) \rho(k)
$$

where...

$$
\delta_{0}^{k}= \begin{cases}1 & k=0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\rho(k)=e^{\varphi(k)} \text { for } \quad k=1,2,3, \ldots
$$

$$
\alpha \in(0,1)
$$

The proposed model for N :

$$
p_{N}(k)=\alpha \delta_{0}^{k}+(1-\alpha) \rho(k)
$$

where...

$$
\delta_{0}^{k}= \begin{cases}1 & k=0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\rho(k)=e^{\varphi(k)} \text { for } \quad k=1,2,3, \ldots
$$

$\alpha \in(0,1)$
Identifiable?

Identifiability

Phi Estimate

Identifiability

Phi Estimate

Restriction

Identifiability

Phi Estimate

Restriction

$$
\rho(k)=\left\{\begin{array}{cc}
e^{\varphi(k)} & \text { for } \\
0 & k=1,2,3, \ldots \\
\text { otherwise }
\end{array}\right.
$$

MLE Estimates:

$$
\begin{gathered}
\widehat{p_{N}}(k)=\widehat{\alpha} \delta_{0}^{k}+(1-\widehat{\alpha}) \widehat{\rho}(k) \\
\widehat{\alpha}=\frac{\mathbb{I}\left(N_{i}(0)\right)}{n} \text { for } \quad i=1, \ldots, n \\
\widehat{\rho}=\left\{\begin{array}{cc}
e^{\varphi(k)_{M L E}} & \text { for } \\
0 & k=1,2,3, \ldots \\
\text { otherwise }
\end{array}\right.
\end{gathered}
$$

MLE Estimates:

$$
\begin{gathered}
\widehat{p_{N}}(k)=\widehat{\alpha} \delta_{0}^{k}+(1-\widehat{\alpha}) \widehat{\rho}(k) \\
\widehat{\alpha}=\frac{\mathbb{I}\left(N_{i}(0)\right)}{n} \text { for } \quad i=1, \ldots, n \\
\widehat{\rho}=\left\{\begin{array}{cc}
e^{\varphi(k)_{M L E}} & \text { for } \\
0 & k=1,2,3, \ldots \\
\text { otherwise }
\end{array}\right.
\end{gathered}
$$

I_{2} Distances from the true PMF:

I_{2} Distances from the true PMF:

I_{2} Distances from the true PMF:

The Estimate of the Aggregate Loss:

The Estimate of the Aggregate Loss:

Aggregate Loss:

$$
f_{S}(s)=\mathbb{P}[N=0] \delta_{0}(s)+\mathbb{P}[N>0] f_{S \mid N>0}(s)
$$

The Estimate of the Aggregate Loss:

Aggregate Loss:

$$
f_{S}(s)=\mathbb{P}[N=0] \delta_{0}(s)+\mathbb{P}[N>0] f_{S \mid N>0}(s)
$$

The Estimate of the Aggregate Loss:

Aggregate Loss:

$$
f_{S}(s)=\mathbb{P}[N=0] \delta_{0}(s)+\mathbb{P}[N>0] f_{S \mid N>0}(s)
$$

$$
\begin{gathered}
\mathbb{P}[S=0] \Leftrightarrow \\
N=0
\end{gathered}
$$

Estimate of Aggregate Loss

Continuous part of Aggregate Loss Distribution

Future work

- Prove consistency of the proposed model
- Generalize the assumptions on the claim severity
- Provide a goodness of fit statistic under a discrete log-concave distribution

THANK YOU

$$
f_{S \mid N>0}(s)=\int_{-\infty}^{\infty} \phi_{S}(-2 \pi i t) e^{2 \pi i t s} d t
$$

