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Abstract

Log-concave density estimation is considered as an alternative for kernel density

estimations which does not depend on tuning parameters. Pointwise asymptotic

theory has been already developed for the nonparametric maximum likelihood

estimator of a log-concave density. Here, the practical aspects of this theory are

studied. In order to obtain a confidence interval, estimators of the constants ap-

pearing in the limiting distribution are developed and quantiles of the underlying

process estimated. We then study the empirical coverage probabilities of point-

wise confidence intervals based on these methods. The general methodology can

be applied to other shape constrained problems - e.g. k-monotone estimators.



Chapter 1

Introduction

1.1 Introduction

In nonparametric density estimation, kernel smoothing methods are common

approaches, introduced by Fix and Hodge(1951) that involve some tuning pa-

rameters, such as the order of kernel and bandwidth. An optimal choice of

these parameters has not a straightforward solution, since they depend on the

unknown underlying density f through the integral of the square of the second

derivative of f. Silverman(1982, 1986) and Donoho et al.(1996) did a vast work

in this field. To avoid this problem, another approach was formed by imposing

some constraints on f , for example, convexity on certain intervals, unimodality

and monotonicity. Such shape constraints are sometimes arise from the problem

under study directly, ( Hampel (1987) or Wang et al. (2005)), or they are at least

plausible in many problems. Also, imposing these constraints might improve the

quality of the estimator.

In the context of density estimation, Grenander (1956) derived the nonparamet-

ric maximum likelihood estimator of a density function that is non-increasing on

a half-line. But as the nonparametric MLE does not exist for a unimodal density

with unknown mode( Birge (1997)), this result is not useful for estimating such

densities. Even with a known mode, the estimator is inconsistent near the mode(

Woodroofe and Sun (1993)).

Walther (2002) worked on one kind of shape restricted maximum likelihood
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inference, called log-concavity. Although the class of log-concave densities is

a subset of the class of the unimodal densities, it contains most of the com-

monly used parametric distributions. Pal et al.(2006) and Rufibach (2006),

independently proved that nonparametric maximum likelihood estimator of a

log-concave density, always uniquely exists. Uniform consistency of NPMLE of

log-concave densities was shown by Duembgen and Rufibach (2009) for the case

d = 1 dimension. Cule and Samworth(2010) and Cule , Samworth and Stewart

(2010) developed the nonparametric maximum likelihood estimator for multidi-

mensional log-concave densities and studied its limiting behavior.

Silverman(1986), Thompson and Tapia(1990), showed some applications of non-

parametric density estimation. Because of the some attractive properties of

Log-concave functions, they has been applied in modeling and inference, in both

the univariate and the multivariate cases. The family of log-concave distribu-

tions contains symmetric and skewed densities. This flexibility and also having

subexponential tails and non-decreasing hazard rates are of the properties of

this class that widen the area of its applications. (see Karlin (1968) and Bar-

low and Proschan (1975)). Using the fact that the hazard rate of a log-concave

density is automatically monotone, Duembgen and Rufibach (2009) build a non-

decreasing estimator of the hazard rate. Utilizing a log-concave estimator leads

to an improved performance for some problems in extreme value theory which re-

ported by Muller and Rufibach (2009). Economics(An (1995,1998),Bagnoli and

Bergstrom (2005), and Caplin and Nalebuff (1991)), reliability theory(Barlow

and Proschan (1975)), sampling and nonparametric Bayesian analysis( see Gilks

and Wild (1992), Dellaportas and Smith (1993), and Brooks (1998)) and clus-

tering(Guenther Walther(2008)) are some of the areas which the log-concave

distributions are found useful in. Duembgen et al. (2007) expanded EM algo-

rithm to estimate a distribution based on arbitrarily censored data under the

assumption of log-concavity. Balabdaoui et al. (2009) investigate the mode of

NPMLE f̂n as an estimator of the mode of true density f. They also provided the

pointwise limiting theory of the nonparametric maximum likelihood estimator

of this family of densities. Using the limiting theory we developed a computable
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confidence interval for estimator, which shows the variability of estimator better

than a pointwise estimate.

In the first chapter, nonparametric density estimation, motivation for studying

shape constrained densities and nonparametric maximum likelihood estimators

are briefly discussed. Definition of log-concave density and some of its useful

properties can be found in Chapter 2. In addition, some theorems for existence

and uniqueness of NPMLE’s are mentioned and a computational method to find

these estimators is introduced.

Chapter 3, contains our work to compute a confidence interval for log-concave

density. There are constant C2 and the quantile C(0) which are estimated in this

chapter and simulation result for quantile estimation is available. To approxi-

mate C2, we need to find the optimal bandwidth for kernel smoothing of first and

second derivative of log-concave maximum likelihood estimator. For this sake

different method of bandwidth selection are studied and also the consistency of

the estimator is investigated.

The simulation results for bandwidth selection methods including empirical cov-

erage probabilities of pointwise confidence intervals are shown in Chapter 4.

1.2 Nonparametric estimation of a density function

To estimate a density function directly from data, without some restrictive

assumptions, nonparametric approach is helpful. The simplest way to esti-

mate a density is the histogram which needs two parameters: bin width h(or

bandwidth) and starting point x0 of the first bin. The bins are of the form

[x0+(i− 1)h, x0+ ih), i = 1, 2, ...,m and the approximated density at the center

of each bin is given by

f̂(x) =
1

n

Number of observations in the same bin as x

h

where n and m are denoted the number of observations and the number of bins,

respectively. The choice of bandwidth has a substantial effect on the shape of

estimated density. Although simplicity is a benefit of using the histogram, it has

several drawbacks such as
3



- discontinuities which have not arisen form the underlying density and are due

to the bin locations

- the density depends on the starting position of the bins

- in high dimensions, a very large sample is needed or else many of the bins

would be empty

Therefore, other methods have been developed which improve the estimation.

1.2.1 Kernel Smoothing

Kernel-based methods are of the most popular estimators of density functions.

They are smoother than histograms and converge to the true density faster.In

other words, the MISE is asymptotically inferior to the kernel estimator, since its

convergence rate of MISE( mean integrated square error)of histogram isO(n−2/3)

compared to the kernel estimators O(n−4/5) rate.( see more in Scott(1979)).

Kernel estimators remove the dependency on the first points by centering a

kernel function at each data point. So two of the problems with histograms are

eliminated, but bandwidth problem still remains. Usually a function K is called

kernel of order r, if it satisfies the following assumptions:

- K is symmetric,i.e. K(x) = K(−x)

-
∫
RK(x)dx = 1

-
∫
R xiK(x)dx = 0 , i = 1, ..., r − 1

-
∫
R xrK(x)dx ̸= 0

Some of the commonly kernels are: Uniform, Triangle, Epanechnikov, Quartic,

Triweight and Gaussian. In this work, the Gaussian kernel of zero mean and h2

variance is used which all its derivatives exist.

K(x) = 1√
2πh2

e−
x2

2h2

K ′(x) = (− x
h2 )

(
1√
2πh2

e−
x2

2h2

)

K ′′(x) = ( 1
h2 )(

x2

h2 − 1)

(
1√
2πh2

e−
x2

2h2

)
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Figure 1.1: The dot black line shows the true standard normal density, red

line and blue line show the evaluated MLE at grid points and smoothed MLE,

repectively

Given a random sample X1, ..., Xn with a continuous, univariate density f. The

kernel density estimator is

f̂n(x) =
1

n

n∑
i=1

Kh(x−Xi)

the estimator for the r-th derivative of the density function f(x) is

f̂ (r)
n (x) =

1

n

n∑
i=1

K
(r)
h (x−Xi)

The value of the bandwidth h has more effect on the quality of kernel

smoothed estimate than the shape of kernel K. Therefore it is important to

choose the most efficient bandwidth value. Too small or too large values lead to

the undersmoothed or oversmoothed estimates(a small bandwidth leading to a

higher variance and a large bandwidth causing a higher bias).

So, choosing the optimal smoothing parameter is crucial in kernel estima-

tion.(See Silverman (1986))
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1.3 Maximum likelihood estimators

Parametric MLE

Maximum likelihood is one of the methods for parametric estimation and the

density can be estimated by f̂n(.) = f(., θ̂n). Define the likelihood function as

Ln(θ) =
n∏

i=1

f(Xi; θ)

and the log-likelihood

ln(θ) =
1

n

n∑
i=1

log f(Xi; θ)dFn(x)

where Fn denotes the empirical distribution function.

θ̂n = max
θ∈Θ

ln(θ)

Under regularity condition, it may be shown that

||θ̂n − θ0||2 = O(n−1/2)

Here θ0 and ||.||2 denote the true parameter and the Euclidean norm on R, re-

spectively. Choosing a suitable norm, there would be the same property for

||f̂n − f0||.

Nonparametric MLE(NPMLE)

In the absence of a parametric model, there are less assumption about the un-

derlying density and the estimate converges more slowly than the O(n−1/2). In

this case the maximum likelihood approach is not efficient any more.

The empirical distribution function can be viewed as a nonparametric max-

imum likelihood estimate (Thompson and Tapia (1990)). The kernel density

estimator can considered as a kind of maximum likelihood estimator. The max-

imum likelihood estimator is a linear function between each two data points

(Duemgen et al. (2007)), that is, it is not smoothed. Therefore it is not differen-

tiable every where but in some applications, it is preferred to have a smoothed

estimator. kernel density estimator might be written as the smoothed maximum

likelihood estimator

f̃(x) =

∫
y
Kh(x− y)f̂n(y)dy

6



Here f̂n(y) denotes the maximum likelihood estimate at point y and f̃(x) is the

smoothed maximum likelihood estimator.
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Chapter 2

Family of log-concave densities

2.1 Introduction

Specifying an optimal smoothing parameter or bandwidth was introduced as one

of the problems of performing kernel density estimation. So it is useful to find

some methods of automatic bandwidth selection.

Imposing some shape constraints on the densities under consideration can result

in an explicit solution that does not depend on a tuning parameter.Two con-

straints monotonicity and unimodality are of most interest in the literature. In

fact, monotone densities are included in the class of unimodals, for which the

mode is located at either edge of the densitys support.

Because of the attractive properties of log-concave functions, it can be used as

an alternative for kernel-density estimation.

2.2 Basic definition

Let X be a random variable with distribution function F and Lebesgue density

f(x) = exp(φ(x))

for some concave function φ : R → [−∞,∞). In other word, a function f is

called log-concave if log f is concave, i.e.

log f(λx+ (1− λ)y) ≥ λ log f(x) + (1− λ) log f(y)
8



for all λ ∈ (0, 1) and all x, y ∈ R.

Remark: Log-concavity of f on (a, b) is equivalent to each of the following two

conditions.

i. f ′(x)/f(x) is monotone decreasing on (a, b)

ii. If the second derivative of log f exists, then (log f(x))′′ < 0

2.3 Properties of Log-Concave Random Variables

The class of log-concave densities is a large and flexible class with many nice

properties.

• Many parametric models, for a certain range of their parameters are log-

concave. Normal, uniform, gamma(r,λ) with shape parameter r ≥ 1, beta(a,b)

for a ≥ 1 and b ≥ 1, generalized Pareto, Gumbel, Frechet, logistic or Laplace, are

some of these models. So a log-concave density can be nonparametric alternative

for purely parametric models.

Definition A real-valued function f on R is PF2 if and only if both conditions

hold,

(a) f(x) ≥ 0

(b) for any two pairs (x1, y1) and (x2, y2) in R, where x1 < x2 and y1 < y2 , the

determinant ∣∣∣∣∣∣f(x1 − y1) f(x1 − y2)

f(x2 − y1) f(x2 − y2)

∣∣∣∣∣∣
is nonnegative.

Each of the following two statements is equivalent to (b).

(b′) f is a concave function on R

(b′′) for every fixed δ > 0, the ratio f(x+δ)
f(x) is decreasing in x, for every x in an

interval contained in a support of f.

• Tails of log-concave densities are sub-exponential:i.e. if X ∼ f ∈ PF2 , then

E exp(c|X|) < ∞ for some c > 0.

• For every real valued log-concave random variable X, there exist θ0 > 0 such
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that MX(θ) = E(eθX) < ∞ for all θ ∈ R that ||θ||2 < θ0, where ||.||2 is L2 norm.

A proof can be found in Cule??thesis (Theorem 2.6).

• every log concave density is unimodal but it is not necessarily symmetric.

• A log-concave density is unimodal, but the converse is not correct. A function

f : R → R is said to be unimodal if there exist a constant m ∈ R such that f is

nonincreasing on (m,∞) and nondecreasing on (−∞,m). • A density f on R is

log-concave if and only if its convolution with any unimodal density is unimodal.

However the class of unimodal families is not closed under convolution. Log-

concavity has been called ”strongly unimodality”(Ibragimov,1956)

• If X and Y are independent, log-concave random variables, then X+Y is log-

concave. This is an attractive property of this class which is not held by the

class of unimodal random variables.

• Marginal and conditional densities obtained from a log-concave density are

log-concave.Inverse is not necessarily true.

• The class of log-concave function is closed under weak limits.

• Unlike the family of log-convex densities, a mixture of log-concave densities is

not log-concave, in general.

• Let f be strictly monotonic (increasing or decreasing) on the interval (a, b).

and either f(a) = 0 or f(b) = 0. Then if f ′ is log-concave on (a, b), then f(x) is

also log-concave on (a, b).(see Bagnoli and Bergstrom, 1989 for proof)

• If the density f, is monotone decreasing, then its c.d.f., F, and its left side

integral,G(x) =
∫ x
l F (t)dt, are both log-concave.

2.4 Existence and uniqueness of maximum likelihood

estimator

In order to use maximum likelihood in nonparametric situations , imposing some

restrictions is necessary to ensure that the density does not get too spiky. For

the first time, Grenander (1956) used shape-constrained maximum likelihood for

estimating mortality under the assumption of monotonicity. Then some other

shape constraints have been studied, such as unimodality (Rao, 1969), convex-

ity (Groeneboom et al., 2001b), k-monotonicity, (Balabdaoui and Wellner, 2007)
10



and log-concavity (Duembgen and Rufibach, 2008; Walther, 2002). Although, no

maximum likelihood estimator exists for some classs such as unimodal densities

with unknown mode,( Birge,( 1997)), we can use this method by adding some

restriction for example log-concavity. The claim that these estimators perform

well in practice has been shown by empirical results in different works. Maximum

likelihood estimation for log-concave densities in one dimension was introduced

by Walther (2002) and further Duembgen and Rufibach (2008) developed this

technique.

Let X1, X2, ..., Xn be a random sample of size n > 1 from distribution F. For any

log-concave probability density f on R, the normalized log likelihood function

at f is given by

l(φ) =

∫
log f dFn =

∫
φ dFn (2.1)

where Fn denotes the empirical distribution function of the sample. LetC de-

note the class of all concave function φ : R → [−∞,∞). One can show that

maximizing l(φ) over all function φ satisfying the constraint
∫
exp φ(x) dx = 1

is equivalent to adding a Lagrangian term and maximizing

L(φ) =

∫
R
φ dFn −

∫
R
exp φ(x) dx (2.2)

Hence, the maximum likelihood estimator of φ is

φ̂n = max
φ concave

L(φ)

and the nonparametric log-concave density estimator is f̂n = exp φ̂n.

Theorem 2.4.1. Suppose that X1, X2, ..., Xn are iid observations in R from a

log-concave density f and X(1), X(2), ..., X(n) are the corresponding order statis-

tics to the observations. Then, with probability one, there is a unique non-

parametric maximum likelihood estimator φ̂n which is linear on all intervals

[X(j), X(j+1)], 1 ≤ j < n. Moreover, φ̂n = −∞ on R|[X1, Xn].

φ̂n is piecewise linear, changes of slope is only possible at data points Xi ∈

[X1;Xn], i.e. for a continuous and piecewise linear function h : [X1, Xn] → R ,
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the set of knots is introduced as

Sn(h) = {t ∈ (X1, Xn) : h
′(t−) ̸= h′(t+)} ∪ {X1, Xn}

Knots of φ̂n only occur at some of the ordered observations X(1), X(2), ..., X(n).

The estimator φ̂n has the following characterization. For x ≥ X1, define the

processes

F̂n(x) =

∫ x

X1

exp(φ̂n(t)) dt , Ĥn(x) =

∫ x

X1

F̂n(t) dt

Hn(x) =

∫ x

X1

Fn(t) dt =

∫ x

−∞
Fn(t) dt.

then the concave function φ̂n is the MLE of the log density φ0 if and only if,

Ĥn(x) ≤ Hn(x), for all x ≥ X1,

= Hn(x), if x ∈ Ŝn(φ̂n)

Groeneboom and Wellner(2001) show that if the true density f0 is convex on

[0,∞) and that f0 is twice continuously differentiable in a neighborhood of x0

with f ′′
0 (x0) > 0, the MLE f̂n satisfies

n2/5(f̂n(x0)− f0(x0)) → (24−1f2
0 (x0)f

′′
0 (x0))

1/5H′′(0) (2.3)

where H is a particular upper invelope of an integrated two-sided Brownian

motion +t4.

2.5 A Computational approach for Univariate Log-

Concave Density Estimation

In last few years, several algorithms have been proposed to estimate maximum

likelihood of a log-concave density. Duembgen and Rufibach(2011) have imple-

mented two of those algorithms, named an iterative convex minorant and an

active set algorithm, in an R package, logcondens.

This package provides the maximum likelihood estimate (MLE) and smoothed
12



log-concave density estimator derived from the MLE. Also it is possible to evalu-

ate the estimated density, distribution and quantile functions at arbitrary points

and compute the characterizing functions of the MLE. Moreover, the user is en-

abled to sample from the estimated distribution. There are two datasets available

related to log-concave density estimation.
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Chapter 3

Confidence Interval

3.1 Introduction

Log-concave estimation has many characteristics similar to convex density es-

timation problem mentioned in previous chapter. Balabdaoui, Rufibach and

Wellner(2009) find that under the following assumptions:

1- The density function f0 belongs to log-concave family.

2- f0(x0) > 0

3- The function φ0 is at least twice continuously differentiable in a neighborhood

of x0

4- If φ′′
0(x0) ̸= 0, then k=2. otherwise, suppose that k is the smallest integer

such that φ
(j)
0 (x0) = 0, j = 2, ..., k − 1, and φ

(k)
0 (x0) ̸= 0 and φ

(k)
0 is continuous

in a neighborhood of x0.

Then

nk/(2k+1)(f̂n(x0)− f0(x0)) → Ck(x0, φ0)H
′′
k(0)

where the constant Ck is given by

Ck(x0, φ0) =

(
f0(x0)

k+1|φ(k)
0 (x0)|

(k + 2)!

)1/(2k+1)

Now, suppose that all four assumption hold with k = 2.

Let W denote two-sided Brownian motion, starting at 0.That is,W (t) = W1(t); t ≥

0 and W (t) = W2(−t); t ≤ 0; where W1 and W2 are two independent Brownian
14



motions with W1(0) = W2(0) = 0. For t ∈ R, define:

Y2(t) =


∫ t
0 W (s)ds− t4, if t ≥ 0,∫ 0
t W (s)ds− t4, if t < 0.

H2 is called the lower invelope of the process Y2 if

H2(t) ≤ Y2(t), for all t ∈ R;

H′′
2 is concave;

H2(t) = Y2(t), if the slope of H′′
2 decreases strictly at t.

Based on the limiting distribution of the NPMLE, a confidence interval for

the true log-concave the density f0 is

f̂n(x0)± n−2/5.C2(x0, φ0)C(0)

where

C2(x0, φ0) =

(
f3
0 (x0)|φ′′

0(x0)|
24

)1/5

,

and the distribution of C(0) is known and is described in next section.

3.2 Estimating Quantiles of the Limiting Process

According to Balabdaoui, Rufibach and Wellner(2009)

n2/5C−1
2 (x0)(f̂n(x0)− f0(x0)) → H′′

2

have defined the process C.

They show that Suppose that Cm denotes the class of concave functions φ, that

φ(−m) = φ(m) = −12m2 The limiting distribution C(0) at t = 0 is the following

process:

C = lim
m→∞

min
φ∈Cm

{
∫ m

−m
φ2(t) dt− 2

∫ m

−m
φ(t) d(W (t)− 4t3)},

Then C(t) = H′′
2(t), for all t ∈ R. The constant C can be seen as the solution

15



of the continuous time regression problem, where the Y (t) is obtained from the

differential equation dY (t) = 12t2dt+ dW (t) .

Existence of C̃ which precedes C is shown in Groeneboom et al.(2001a). They

explain an iterative cubic spline algorithm to simulate from the approximate dis-

tribution of C. Groeneboom et al.(2008) also described an other algorithm based

on the support reduction which has many applications and for example has used

in Maathuis(2010) and Jankowski et al.(2009). Active set algorithm is the third

way, described in Duembgen et al.(2010). Ng and Maechler have implemented

this method in the function conreg, available in the R pachage cobs, but the

constraints φ̃(−m) = φ̃(m) = −12m2 have not been implemented. Groeneboom

et al. (2008)and Rufibach (2007, 2010) have introduced some other algorithm

which can be useful to deal with this problem.

Method COBS from the ”brute force” approach is used for simulation to esti-

mate the quantile. The result can be seen in Table 1. B = 1000 samples of

n2/5C−1
2 (x0)(f̂n(x0)− f0(x0)) for comparison with the last result.

3.2.1 Simulation Results

Table 1 contains the result of B = 1000 simulation of n = 10000 data over dif-

ferent values of X0. four different distribution were chosen

(D1). the standard normal distribution,

(D2). the gamma distribution with shape parameter 3 and rate 1,

(D3). the beta distribution with both parameters 2,

(D4). the standard Gumbel distribution.

Comparing with the empirically obtained results, it seems that the chosen

method COBS provides sufficient answers as the quantile estimations. .
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Table 3.1: Estimated values of F−1
C(0)(p) using COBS, and four simulation us-

ing distributions (D1) normal(0, 1), (D2) gamma(3,1), (D3) beta(3,3), and (D4)

Gumbel.

p COBS (D1) (D2) (D3) (D4)

0.001 -3.5014 -3.6504 -3.2798 -3.4365 -3.4543

0.005 -3.0902 -2.9780 -2.8530 -2.8869 -2.9044

0.010 -2.7925 -2.7106 -2.5708 -2.6470 -2.5991

0.025 -2.4547 -2.3185 -2.1675 -2.2487 -2.2173

0.050 -2.0693 -1.9782 -1.8294 -1.9225 -1.9133

0.100 -1.6675 -1.5836 -1.4797 -1.5441 -1.5616

0.200 -1.1643 -1.0815 -1.0288 -1.0698 -1.0718

0.500 -0.0878 -0.0678 -0.0795 -0.0664 -0.0708

0.800 1.0767 1.0705 1.0023 1.0353 1.0441

0.900 1.7298 1.7150 1.6175 1.6566 1.6541

0.950 2.2855 2.2722 2.1470 2.2038 2.6462

0.975 2.7274 2.7657 2.6070 2.6857 2.5224

0.990 3.2553 3.3377 3.1446 3.2323 3.1627

0.995 3.6527 3.6772 3.4977 3.5944 3.5180

0.999 4.1805 4.3257 4.0823 4.2211 4.1099

3.3 Estimating C2

To estimate the constants C2 the approximation of the second derivative of φ0

is needed. We know that

φ(x) = log f(x),

and

φ′′(x) =
f(x)f ′′(x)− f ′2(x)

f2(x)
.

So, it is necessary to estimate the first and second derivative of the underlying

unknown density f .

To estimate the true density f0(x0) we use the kernel maximum likelihood
17



estimator, that is

f̃h,n(x0) =

∫
R
Kh(x0 − x)f̂n(x) dx

where n and h denote the sample size and the bandwidth, respectively. K is

the Gaussian kernel with mean zero and standard deviation h and f̂n(·) is the

maximum likelihood estimator.

By differentiation at each point, one can have a pointwise maximum likelihood

estimate of the derivatives of the log-concave density

f̃ ′
n,h(x) =

∫
y
K ′

h(x− y)f̂n(y)dy

f̃ ′′
n,h(x) =

∫
y
K ′′

h(x− y)f̂n(y)dy

The accuracy of the estimation is highly depends on the value of h.

3.4 Bandwidth Selection

This section is devoted to find an optimal bandwidth h for kernel estimation of

second derivative of the density function. For this sake, there are several meth-

ods such as cross validation, risk estimation, etc. Here we use three different

methods to find the optimal smoothing parameter.

3.4.1 Least Square Cross Validation

Cross validation (CV) is a popular method to optimize the bandwidth h. This

method tries to find the h that minimizes one kind of error criterion between the

true function and the estimated one base on different subsets of observations.

In nonparametric density estimation methods,the choice of this criterion can af-

fect the asymptotic results. Devroye and Gyorfi (1985) show that the L1 norm

is the only Lp norm invariant under affine transformation. ”For kernel density

estimation, the L2 norm has been preferred for its easy decomposition into bias

and variance terms.” There are two main forms of cross validation: maximum

likelihood cross validation(which uses the Kulback-Leibler information as crite-

rion) and least squares cross validation. Here, we have used least square CV as
18



the first method.

Integrated Square Error(ISE)

Consider the smoothed continuous kernel density estimator f̃h,n,

f̃ ′′
h,n(x) =

∫
y
K ′′

h(x− y)f̂n(y)dy

where f̂n(.) is the NPMLE. The Integrated Square Error(ISE) is given by

ISE(f̂ ′′
h,n) =

∫
(f̃ ′′

h,n − f ′′)(x)2 dx

=

∫
(f̃ ′′

h,n(x)− f ′′(x))2 dx

=

∫
f̃

′′2
h,n(x) dx− 2

∫
f̃ ′′
h,n(x)f

′′(x) dx+

∫
f ′′(x)2 dx

The last term does not depend on h, so the the criterion that should be minimized

is:

CV (h) = ISE(f̂ ′′
h,n)−

∫
f ′′(x)2 dx

=

∫
f̃

′′2
h,n(x) dx− 2

∫
f̃ ′′
h,n(x)f

′′(x) dx

To estimate numerically, we consider a set of grid points and evaluate the func-

tions in those points. Let x1, ..., xm be the grid points and ∆(xi) = mini(xi −

xi−1). K denotes the Gaussian kernel and f̂n(.) is the estimated maximum likeli-

hood obtained from the observation of the unknown density. The first term can

19



be calculated from data∫
f̃

′′2
h,n(x) dx =

∫
x(
∫
y

1
h3 .K

′′(y−x
h )f̂n(y) dy)

2dx

∼=
∫
x(
∑n

i=1
1
h3 .K

′′(xi−x
h )f̂n(xi)∆(xi))

2dx

=
∫
x

∑n
i=1

∑n
j=1

1
h6 .K

′′(xi−x
h )f̂n(xi).K

′′(
xj−x
h )f̂n(xj)∆(xi)∆(xj) dx

=
∑n

i=1

∑n
j=1

1
h5

∫
sK

′′(s).K ′′(
xi−xj

h + s)f̂n(xi)f̂n(xj)∆(xi)∆(xj) ds

=
∑n

i=1

∑n
j=1

1
h5

∫
sK

′′(s).K ′′(
xj−xi

h − s) ds f̂n(xi)f̂n(xj)∆(xi)∆(xj)

=
∑n

i=1

∑n
j=1

1
h5K

′′ ∗K ′′(
xj−xi

h )f̂n(xi)f̂n(xj)∆(xi)∆(xj)

In the fourth line the substitution xi−x
h = s is used and the reason for the equa-

tion in the fifth line is that the second derivative of Gaussian kernel is symmetric

around 0. The last equation is resulted of the definition of the convolution of a

function which is:

f ∗ f(x) =
∫
R
f(x− y)f(y)dy

In the second term of CV (h), performing integration by part twice,

∫
f̃ ′′
h,n(x)f

′′(x) dx =
(
f̃ ′′
h,n(x)f

′(x)− f̃ ′′′
h,n(x)f(x)

)∞
−∞

+
∫
f̃
(4)
h,n(x)f(x) dx

= limb→∞(f̃ ′′
h,n(b)f

′(b)− f̃ ′′′
h,n(b)f(b))

− limb→−∞(f̃ ′′
h,n(b)f

′(b)− f̃ ′′′
h,n(b)f(b))

+
∫
f̃
(4)
h,n(x)f(x) dx

= 0 + E(f̃
(4)
h,n(x))

Let x(1), ..., x(n) be ordered data points.By the bounded convergence theorem,

and the fact that the rate of decay in exponential functions is much faster than
20



the growth of power functions, we have

limb→∞ f̃ ′′
h,n(b) = limb→∞

∫ x(n)
x(1)

1
h3 .K

′′( b−y
h )f̂n(y) dy

= limb→∞
∫ x(n)
x(1)

1
h3

√
2π
e−

1
2
( b−y

h
)2 [( b−y

h )2 − 1] f̂n(y) dy

= 0

Using this and considering that φ is a concave function, For any fixed m, the

first part of the equation can be written

limb→∞ f ′(b)f̃ ′′
h,n(b) = limb→∞ limh→0e

φ(b) × (φ(b+h)−φ(b)
h )× f̃ ′′

h,n(b)

≤ limb→∞ limh→0 e
φ(b) × |φ(b+h)−φ(b)

h | × f̃ ′′
h,n(b)

≤ limb→∞ eφ(b) × |φ(b+m)−φ(b)|
m × f̃ ′′

h,n(b)

≤ 1
m limb→∞{eφ(b)|φ(b+m)|+ eφ(b)|φ(b)|} × f̃ ′′

h,n(b)

= 0

Consider the second part of equation. There is some constant c such that

limb→∞ f(b)f̃ ′′′
h,n(b) = limb→∞ eϕ(b) ×

∫ x(n)
x(1)

1
h4 .K

′′′( b−y
h )f̂n(y) dy

≤ limb→∞ e−c.b ×
∫ x(n)
x(1)

1
h4

√
2π
e−

1
2
( b−y

h
)2 [3( b−y

h )− ( b−y
h )3] f̂n(y) dy

= 0

The inequality arises from concavity of φ and the final answer is obtained similar

to the other term . The same result holds for the term when b goes to −∞

For the last term, observe that
∫
f̃
(4)
h,n(x)f(x) dx = EY [f̃

(4)
h,n(x)] where the

expectation should be computed with respect to the additional and independent
21



observation Y . Let y1, ..., yn denote the observation and x1, ..., xm be the grid

points, which maximum likelihood of the underlying density is evaluated at each

grid point. To estimate the expectation one can use the leave one out estimate

̂
E(f̃

(4)
h,n(y)) = 1

n

∑n
i=1 f̃

(4)
h,(−i)(yi)

= 1
n

∑n
i=1

∑m
j=1

1
h5K

(4)(
xj−yi

h )f̂n,(−i)(xj)∆(xj)

Hence, we can find an optimal bandwidth h by minimizing CV (h), that is

CV (h) =
∑n

i=1

∑n
j=1

1
h5K

′′ ∗K ′′(
xj−xi

h )f̂n(xi)f̂n(xj)∆(xi)∆(xj)

− 1
n

∑n
i=1

∑m
j=1

1
h5K

(4)(
xj−yi

h )f̂n,(−i)(xj)∆(xj)

(3.1)

Local Cross Validation

Here, we try to minimize criterion at specified points to get the bandwidth h.

Let t0 be an arbitrary point which we are interested to evaluate the local error

at,

LCV (h) =

n∑
i=1

(f̃ ′′
n,h(t0)− f̃ ′′

(−i),h(t0))
2 (3.2)

Using the previous relation, we get

LCV (h) =
n∑

i=1

 m∑
j=1

K ′′
h(t0 − xj)f̂n(xj)∆(xj)−

m∑
k=1

K ′′
h(t0 − xk)f̂(−i),n(xk)∆(xk)

2

Simulation studies showed that LCV(h) is decreasing with respect to h, so this

is not a useful criterion to find the bandwidth.

3.4.2 The Bandwidth proposed by Duembgen and Rufibach

Duembgen et al(2007) proposed an approach to fit a suitable density to the ob-

servation. The smoothed log concave density estimator f̂∗ , for some bandwidth

γ

f̂∗
n(x) =

∫ ∞

−∞
Kγ(x− y)dF̂n(y)

that is, the convolution of a Gaussian kernel with mean 0 and standard deviation

γ, where γ2 = σ̂2 − V ar(F̂n). 22



Let F̂ ∗ be the distribution function of smoothed density f̂∗. It is clear that F̂ ∗

is the distribution function of X + Y , where X and Y are independent random

variables that X ∼ F̂ and Y ∼ N(0, γ2)

so V ar(f̂∗
n) = σ̂2 .

Duembgen et al.(2007) define an explicit computation forV ar(F̂ ).

V ar(F̂ ) =
∫ zm
z1

(z − Z̄)2f̂(x)dx

=
∑m

j=2∆(zj)((zj−1 − Z̄)2J10(φ̂j−1, φ̂j) + (zj − Z̄)2J10(φ̂j , φ̂j−1)

− ∆(zj)
2J11(φ̂j−1, φ̂j))

Where z1, ..., zm are the support points, ∆(zj) = zj − zj−1, 2 ≤ j ≤ m,

φ̂ = max
φ

L(φ)

which the modified relation

L(φ) =
1

m

m∑
i=1

wiφ(zi)−
m−1∑
j=1

(zj+1 − xj)J(φj , φj+1)

(wi)
m
1 is the vector of positive weights that

∑m
i=1wi = 1. with the auxiliary

function

J(r, s) =

 (exp(r)− exp(s))/(r − s) if r ̸= s,

exp(r) if r = s.

Here, J10 and J11 are the partial derivatives of J(r, s) with respect to r, and with

respect to r and s, respectively. Duembgen et al.(2010) computed the derivatives

in detail. Now, consider the estimator

σ̂2 = n(n− 1)−1
m∑
j=1

wj(zj − Z̄)2

As γ usually results in an undersmoothed density estimate, we also tried γ×n0.25

as another choice for bandwidth.

3.4.3 Finding a Bandwidth using a reference distribution

Here, we use normal distribution as a reference, i.e. it is assumed that the true

density ( which is unknown in practice ) is normal with mean µ and unknown
23



standard deviation σ. We need to estimate |φ′′|.

φ′′ =
f(x)f ′′(x)− f ′2(x)

f2(x)
=

1
σ2 (

x2

σ2 − 1)f2(x)− x2

σ2 f
2(x)

f2(x)

so

c2(x0, φ0) = (
f0(x0)

3|φ(2)
0 (x0)|

4!
)1/5 =

f0(x0)
3

σ2

We use the smoothed density estimate and the standard deviation of the obser-

vation as the approximation of f and σ.

3.4.4 Kernel Density Method

In this method, instead of MLE the regular form of kernel smoothing is used,i.e.

f̃h,n(x) =
1

n

n∑
i=1

Kh(x− y)

Package ks, enables us to get the bandwidth and density estimation directly. The

function ”kdde” estimates the kernel density derivatives and function ”hscv” is

used for bandwidth selection; However, it is not always stable for large sample

sizes.

3.5 Consistency

Let f̂n(·) ,f̃n(.) and f(y) be the maximum likelihood estimation of the density,

its kernel smoothed version and the true density, respectively.

Theorem 3.5.1. (Cule and Samworth(2009)) Suppose that fn is a sequence of

log-concave densities on R that converges in distribution to some density f. Then

for a a0 > 0 and b0 ∈ R such that f(x) ≤ exp{−a0|x|+ b0}, there is a < a0 that∫
R
ea|x||fn(x)− f(x)|dx → 0.

Also they show, for every density fwith
∫
R |x|f(x)dx < ∞ ,

∫
R f log+ f < ∞

and int(E) ̸= 0 , there exist a unique log concave density f∗ such that f∗(x) ≤

exp{−a0|x|+ b0}. Then for any a < a0∫
R
ea|x||f̂n(x)− f∗(x)|dx → 0

24



and for continuous f∗

sup
x∈R

ea|x||f̂n(x)− f∗(x)|d → 0

Theorem 3.5.2. (Duembgen and Rufibach (2009)) Let f̂n be the nonparametric

maximum likelihood estimator of f, then f̂n is the uniform consistent estimator

of f, i.e. ∫
|f̂n(x)− f(x)|dx →p 0

Here, we show that for a fixed bandwidth, f̃ ′′
h,n(.) asymptotically converges

to of f ′′
h,0(.).

Theorem 3.5.3. Let f̃ ′′
h,n(.) be a sequence of the smoothed log-concave second

derivative of maximum likelihood estimators, and f ′′
h,0(.) be the smoothed log-

concave second derivative of density f, i.e.

f ′′
h,0(x) =

∫
K ′′

h(x− y)f0(y)dy.

Then, for every fixed bandwidth h, as n → ∞

|f̃ ′′
h,n(x)− f ′′

h,0(x)| → 0

Proof.

|f̃ ′′
h,n(x)− f ′′

h,0(x)| = |
∫
K ′′

h(x− y)f̂n(y)dy −K ′′
h(x− y)f0(y)dy|

≤
∫
|K ′′

h(x− y)||f̂n(y)− f0(y)|dy

25



For Kh(·) , the Gaussian kernel with mean 0 and variance h2,

|K ′′
h(x− y)| = | 1

h2 ((
x−y
h )2 − 1)Kh(x− y)|

= 1
h2 |((x−y

h )2 − 1)|Kh(x− y)

= 1
h2 |(u2 − 1)|K(u)

≤
∫∞
−∞

1
h2 |(u2 − 1)|K(u) du

= 1
h2 [
∫∞
−∞(u2 − 1)K(u) du+ 2

∫ 1
−1(1− u2)K(u) du]

= 2
h2

√
2π
(e1/2 − e−1/2)

In the third line u = x−y
h , and K(u) is the the Gaussian kernel with mean 0

and standard deviation 1. Therefore, for a fixed bandwidth h, the term |K ′′
h(x−

y)| is bounded.

Hence, using the result of Theorem from Duembgen and Rufibach(2009)

|f̃ ′′
h,n(x)− f ′′

h,0(x)| ≤
∫
|K ′′

h(x− y)||f̂n(y)− f0(y)|dy

≤ 2
h2

√
2π
(e1/2 − e−1/2)

∫
|f̂n(y)− f0(y)|dy

→ 0

and proof is complete.
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Chapter 4

Simulation Studies

In this chapter some simulation results for finding the optimal bandwidth and

estimating C2 are presented. Simulation was performed with

• B=100 replications, regenerating samples of size n=1000

• B=1000 replications, regenerating samples of size n=200 and n=1000

from four different log-concave distributions

◦ normal density with mean 0 and standard deviation 1

◦ gamma density with shape parameter 3 and scale parameter 1

◦ beta density with parameters 2 and 2

◦ standard Gumbel density

Also m=500 equidistant grid points between -3 and 3 were chosen and relations

were evaluated at those points.

4.1 Which Bandwidth is optimal?

In the previous chapter several method was introduced to find the bandwidth.

Here, regardless of their asymptotic behavior, it is tried to study and compare

their performance in small samples through running some simulations. That is,

we computed bandwidth through

• minimizing Integrated Square Error(ISE), which is denoted by ise
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Simulation showed that this method is extremely slow, so it did not use for ap-

proximating in practice.

• the bandwidth proposed by Duembgen and Rufibach, denoted by γ

• n0.25 ∗ γ = γ∗

• considering kernel smoothed density, denoted by ks

• using normal density as reference, which is labeled norm

To compare the value of C2 computed using each of the four types of band-

width, the box plots of difference of estimated C2 and its true value at each grid

point, in L1-norm and L2-norm, are given in Figure 4.1 and Figure 4.2. Each

box plot in Figure 4.3 , show the difference between the value of true density and

that of the maximum likelihood kernel estimator at grid points for one different

bandwidth. As it is expected, bandwidth obtained from norm has the smallest

error for normal distribution. For other distribution, it seems that ks , gives the

optimal bandwidth compared with the other methods, i.e. its error is small and

more stable for different densities.

Figure 4.4 and Figure 4.5 show the empirical coverage of the confidence interval

for each method, i.e. the proportion of the 95% confidence intervals for each

grid, which contains that grid point. Plots confirm the results of boxplots, that

is, empirical coverage of the estimates performed using the bandwidth obtained

from ks method, is more than others and more stable in the tails.

28



1 2 3 4

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

a

1 2 3 4

0.
00

5
0.

01
5

0.
02

5

a

1 2 3 4

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

b

1 2 3 4

0.
00

5
0.

01
0

0.
01

5
0.

02
0

b

1 2 3 4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

c

1 2 3 4

0.
2

0.
4

0.
6

0.
8

c

1 2 3 4

0.
05

0.
10

0.
15

0.
20

d

1 2 3 4

0.
05

0.
10

0.
15

0.
20

d

Figure 4.1: Average of difference of true and estimated C2 in L1 for (a) nor-

mal,(b) gamma(3,1), (c) beta(2,2) and (d) standard Gumbel distributions; left

to right: γ, γ∗, norm, ks; left column n=200, right column n=1000, B=1000
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Figure 4.2: Average of difference of true and estimated C2 in L2 for (a) normal,

(b) gamma(3,1), (c) beta(2,2) and (d)standard Gumbel distributions; left to

right: γ, γ∗, norm, ks; left column n=200, right column n=1000, B=1000
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Figure 4.3: Average of difference of true and smoothed density in L1-norm for

normal, gamma(3,1), beta(2,2) and standard Gumbel distributions; left to right:

γ, γ∗, norm, ks; left column n=200, right column n=1000, B=1000
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Figure 4.4: empirical coverage for (a) normal (b) gamma(3,1), (c) beta(2,2) and

(d)standard Gumbel distributions; red line: norm, blue line: ks , yellow line: γ∗

, black line: γ ; n=1000; B=100
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Figure 4.5: empirical coverage for (a) normal (b) gamma(3,1), (c) beta(2,2) and

(d)standard Gumbel distributions; red line: norm, blue line: ks , yellow line: γ∗

, black line: γ ; left column : n=200, right column: n=1000; B=1000
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